Properties

Label 2-6975-1.1-c1-0-115
Degree $2$
Conductor $6975$
Sign $-1$
Analytic cond. $55.6956$
Root an. cond. $7.46295$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.77·2-s + 1.15·4-s − 2.51·7-s + 1.50·8-s − 3.40·11-s − 1.11·13-s + 4.45·14-s − 4.97·16-s + 2.56·17-s + 6.79·19-s + 6.03·22-s − 4.06·23-s + 1.97·26-s − 2.89·28-s + 1.89·29-s − 31-s + 5.82·32-s − 4.54·34-s − 3.62·37-s − 12.0·38-s + 3.28·41-s − 9.35·43-s − 3.91·44-s + 7.22·46-s + 9.51·47-s − 0.695·49-s − 1.28·52-s + ⋯
L(s)  = 1  − 1.25·2-s + 0.576·4-s − 0.948·7-s + 0.532·8-s − 1.02·11-s − 0.308·13-s + 1.19·14-s − 1.24·16-s + 0.621·17-s + 1.55·19-s + 1.28·22-s − 0.848·23-s + 0.387·26-s − 0.546·28-s + 0.351·29-s − 0.179·31-s + 1.02·32-s − 0.780·34-s − 0.595·37-s − 1.95·38-s + 0.512·41-s − 1.42·43-s − 0.590·44-s + 1.06·46-s + 1.38·47-s − 0.0994·49-s − 0.177·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6975 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6975 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6975\)    =    \(3^{2} \cdot 5^{2} \cdot 31\)
Sign: $-1$
Analytic conductor: \(55.6956\)
Root analytic conductor: \(7.46295\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 6975,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
31 \( 1 + T \)
good2 \( 1 + 1.77T + 2T^{2} \)
7 \( 1 + 2.51T + 7T^{2} \)
11 \( 1 + 3.40T + 11T^{2} \)
13 \( 1 + 1.11T + 13T^{2} \)
17 \( 1 - 2.56T + 17T^{2} \)
19 \( 1 - 6.79T + 19T^{2} \)
23 \( 1 + 4.06T + 23T^{2} \)
29 \( 1 - 1.89T + 29T^{2} \)
37 \( 1 + 3.62T + 37T^{2} \)
41 \( 1 - 3.28T + 41T^{2} \)
43 \( 1 + 9.35T + 43T^{2} \)
47 \( 1 - 9.51T + 47T^{2} \)
53 \( 1 + 1.72T + 53T^{2} \)
59 \( 1 + 7.07T + 59T^{2} \)
61 \( 1 - 13.7T + 61T^{2} \)
67 \( 1 + 5.54T + 67T^{2} \)
71 \( 1 - 13.8T + 71T^{2} \)
73 \( 1 + 1.28T + 73T^{2} \)
79 \( 1 - 0.549T + 79T^{2} \)
83 \( 1 - 9.53T + 83T^{2} \)
89 \( 1 - 9.76T + 89T^{2} \)
97 \( 1 + 14.5T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.72647652821094589261896890640, −7.19639482958824633632301977421, −6.43005441513192205218470460936, −5.49586192190947850335265339701, −4.92458517174282335551491426252, −3.77712976239854673553419571525, −3.00399668292915946675946758191, −2.11192858363423729384440685632, −0.961068728629022901143324006103, 0, 0.961068728629022901143324006103, 2.11192858363423729384440685632, 3.00399668292915946675946758191, 3.77712976239854673553419571525, 4.92458517174282335551491426252, 5.49586192190947850335265339701, 6.43005441513192205218470460936, 7.19639482958824633632301977421, 7.72647652821094589261896890640

Graph of the $Z$-function along the critical line