Properties

Label 2-6975-1.1-c1-0-111
Degree $2$
Conductor $6975$
Sign $-1$
Analytic cond. $55.6956$
Root an. cond. $7.46295$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.667·2-s − 1.55·4-s − 3.64·7-s + 2.37·8-s + 1.15·11-s − 5.71·13-s + 2.43·14-s + 1.52·16-s − 1.37·17-s + 2.28·19-s − 0.772·22-s + 5.17·23-s + 3.81·26-s + 5.66·28-s + 5.51·29-s − 31-s − 5.76·32-s + 0.920·34-s − 2.77·37-s − 1.52·38-s + 0.122·41-s − 1.11·43-s − 1.79·44-s − 3.45·46-s − 8.92·47-s + 6.26·49-s + 8.87·52-s + ⋯
L(s)  = 1  − 0.471·2-s − 0.777·4-s − 1.37·7-s + 0.838·8-s + 0.348·11-s − 1.58·13-s + 0.649·14-s + 0.381·16-s − 0.334·17-s + 0.524·19-s − 0.164·22-s + 1.07·23-s + 0.747·26-s + 1.07·28-s + 1.02·29-s − 0.179·31-s − 1.01·32-s + 0.157·34-s − 0.455·37-s − 0.247·38-s + 0.0191·41-s − 0.170·43-s − 0.271·44-s − 0.508·46-s − 1.30·47-s + 0.895·49-s + 1.23·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6975 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6975 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6975\)    =    \(3^{2} \cdot 5^{2} \cdot 31\)
Sign: $-1$
Analytic conductor: \(55.6956\)
Root analytic conductor: \(7.46295\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 6975,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
31 \( 1 + T \)
good2 \( 1 + 0.667T + 2T^{2} \)
7 \( 1 + 3.64T + 7T^{2} \)
11 \( 1 - 1.15T + 11T^{2} \)
13 \( 1 + 5.71T + 13T^{2} \)
17 \( 1 + 1.37T + 17T^{2} \)
19 \( 1 - 2.28T + 19T^{2} \)
23 \( 1 - 5.17T + 23T^{2} \)
29 \( 1 - 5.51T + 29T^{2} \)
37 \( 1 + 2.77T + 37T^{2} \)
41 \( 1 - 0.122T + 41T^{2} \)
43 \( 1 + 1.11T + 43T^{2} \)
47 \( 1 + 8.92T + 47T^{2} \)
53 \( 1 - 3.42T + 53T^{2} \)
59 \( 1 + 0.542T + 59T^{2} \)
61 \( 1 - 10.4T + 61T^{2} \)
67 \( 1 - 15.8T + 67T^{2} \)
71 \( 1 + 10.7T + 71T^{2} \)
73 \( 1 - 8.34T + 73T^{2} \)
79 \( 1 - 5.83T + 79T^{2} \)
83 \( 1 - 16.4T + 83T^{2} \)
89 \( 1 - 8.27T + 89T^{2} \)
97 \( 1 + 9.97T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.61928343499209853517946794261, −6.89620268634860667305496507674, −6.46727678361990805800722254320, −5.24189748517848728867955232724, −4.91378716367899632504425375818, −3.89552213584265950912116716379, −3.19519293854290076263789412747, −2.31533616848062044190558672230, −0.943433535507476676115338031724, 0, 0.943433535507476676115338031724, 2.31533616848062044190558672230, 3.19519293854290076263789412747, 3.89552213584265950912116716379, 4.91378716367899632504425375818, 5.24189748517848728867955232724, 6.46727678361990805800722254320, 6.89620268634860667305496507674, 7.61928343499209853517946794261

Graph of the $Z$-function along the critical line