Properties

Label 2-6960-1.1-c1-0-4
Degree $2$
Conductor $6960$
Sign $1$
Analytic cond. $55.5758$
Root an. cond. $7.45492$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 5-s − 2·7-s + 9-s − 3·11-s + 2·13-s + 15-s − 2·19-s + 2·21-s − 3·23-s + 25-s − 27-s − 29-s − 8·31-s + 3·33-s + 2·35-s − 37-s − 2·39-s − 3·41-s + 43-s − 45-s + 6·47-s − 3·49-s − 3·53-s + 3·55-s + 2·57-s + 12·59-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.447·5-s − 0.755·7-s + 1/3·9-s − 0.904·11-s + 0.554·13-s + 0.258·15-s − 0.458·19-s + 0.436·21-s − 0.625·23-s + 1/5·25-s − 0.192·27-s − 0.185·29-s − 1.43·31-s + 0.522·33-s + 0.338·35-s − 0.164·37-s − 0.320·39-s − 0.468·41-s + 0.152·43-s − 0.149·45-s + 0.875·47-s − 3/7·49-s − 0.412·53-s + 0.404·55-s + 0.264·57-s + 1.56·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6960 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6960 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6960\)    =    \(2^{4} \cdot 3 \cdot 5 \cdot 29\)
Sign: $1$
Analytic conductor: \(55.5758\)
Root analytic conductor: \(7.45492\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6960,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.6495700638\)
\(L(\frac12)\) \(\approx\) \(0.6495700638\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 + T \)
29 \( 1 + T \)
good7 \( 1 + 2 T + p T^{2} \)
11 \( 1 + 3 T + p T^{2} \)
13 \( 1 - 2 T + p T^{2} \)
17 \( 1 + p T^{2} \)
19 \( 1 + 2 T + p T^{2} \)
23 \( 1 + 3 T + p T^{2} \)
31 \( 1 + 8 T + p T^{2} \)
37 \( 1 + T + p T^{2} \)
41 \( 1 + 3 T + p T^{2} \)
43 \( 1 - T + p T^{2} \)
47 \( 1 - 6 T + p T^{2} \)
53 \( 1 + 3 T + p T^{2} \)
59 \( 1 - 12 T + p T^{2} \)
61 \( 1 - 8 T + p T^{2} \)
67 \( 1 + 14 T + p T^{2} \)
71 \( 1 - 6 T + p T^{2} \)
73 \( 1 + 7 T + p T^{2} \)
79 \( 1 - 4 T + p T^{2} \)
83 \( 1 + 9 T + p T^{2} \)
89 \( 1 + 6 T + p T^{2} \)
97 \( 1 - 11 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.899770801579861473981087804378, −7.17531900377998881845205753889, −6.58180755376957205188814173616, −5.77006488668393121681534499142, −5.30160500230118692777924738924, −4.27779225259182179557770504169, −3.67756057504434039559122088317, −2.80266064625643525252358409624, −1.75869855474454202455008515450, −0.41094424430962889401150007147, 0.41094424430962889401150007147, 1.75869855474454202455008515450, 2.80266064625643525252358409624, 3.67756057504434039559122088317, 4.27779225259182179557770504169, 5.30160500230118692777924738924, 5.77006488668393121681534499142, 6.58180755376957205188814173616, 7.17531900377998881845205753889, 7.899770801579861473981087804378

Graph of the $Z$-function along the critical line