Properties

Label 2-6936-1.1-c1-0-60
Degree $2$
Conductor $6936$
Sign $1$
Analytic cond. $55.3842$
Root an. cond. $7.44205$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 1.56·5-s + 5.12·7-s + 9-s + 2.43·11-s − 3.56·13-s − 1.56·15-s + 4.68·19-s + 5.12·21-s + 7.56·23-s − 2.56·25-s + 27-s + 7.12·29-s − 8.24·31-s + 2.43·33-s − 8·35-s + 4·37-s − 3.56·39-s + 2.68·41-s − 4.68·43-s − 1.56·45-s − 0.876·47-s + 19.2·49-s + 6·53-s − 3.80·55-s + 4.68·57-s − 13.3·59-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.698·5-s + 1.93·7-s + 0.333·9-s + 0.735·11-s − 0.987·13-s − 0.403·15-s + 1.07·19-s + 1.11·21-s + 1.57·23-s − 0.512·25-s + 0.192·27-s + 1.32·29-s − 1.48·31-s + 0.424·33-s − 1.35·35-s + 0.657·37-s − 0.570·39-s + 0.419·41-s − 0.714·43-s − 0.232·45-s − 0.127·47-s + 2.74·49-s + 0.824·53-s − 0.513·55-s + 0.620·57-s − 1.74·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6936 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6936 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6936\)    =    \(2^{3} \cdot 3 \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(55.3842\)
Root analytic conductor: \(7.44205\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6936,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.171985463\)
\(L(\frac12)\) \(\approx\) \(3.171985463\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
17 \( 1 \)
good5 \( 1 + 1.56T + 5T^{2} \)
7 \( 1 - 5.12T + 7T^{2} \)
11 \( 1 - 2.43T + 11T^{2} \)
13 \( 1 + 3.56T + 13T^{2} \)
19 \( 1 - 4.68T + 19T^{2} \)
23 \( 1 - 7.56T + 23T^{2} \)
29 \( 1 - 7.12T + 29T^{2} \)
31 \( 1 + 8.24T + 31T^{2} \)
37 \( 1 - 4T + 37T^{2} \)
41 \( 1 - 2.68T + 41T^{2} \)
43 \( 1 + 4.68T + 43T^{2} \)
47 \( 1 + 0.876T + 47T^{2} \)
53 \( 1 - 6T + 53T^{2} \)
59 \( 1 + 13.3T + 59T^{2} \)
61 \( 1 - 4T + 61T^{2} \)
67 \( 1 - 12T + 67T^{2} \)
71 \( 1 + 11.3T + 71T^{2} \)
73 \( 1 + 8.24T + 73T^{2} \)
79 \( 1 + 2T + 79T^{2} \)
83 \( 1 - 7.12T + 83T^{2} \)
89 \( 1 - 9.12T + 89T^{2} \)
97 \( 1 + 1.12T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.87058724292613022102289505018, −7.43150891023759637831324653602, −6.92759501364971886316774892323, −5.64721637689334511603472487308, −4.88487571505503665471190327248, −4.48749531179977551805582501604, −3.61499116599088114045273950190, −2.72023160314759770117993327027, −1.75844291488568003374331706461, −0.955577207304068598837358652150, 0.955577207304068598837358652150, 1.75844291488568003374331706461, 2.72023160314759770117993327027, 3.61499116599088114045273950190, 4.48749531179977551805582501604, 4.88487571505503665471190327248, 5.64721637689334511603472487308, 6.92759501364971886316774892323, 7.43150891023759637831324653602, 7.87058724292613022102289505018

Graph of the $Z$-function along the critical line