Properties

Label 2-6930-1.1-c1-0-42
Degree $2$
Conductor $6930$
Sign $1$
Analytic cond. $55.3363$
Root an. cond. $7.43883$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 5-s + 7-s + 8-s − 10-s − 11-s + 6.74·13-s + 14-s + 16-s − 6.74·17-s + 4·19-s − 20-s − 22-s + 8.74·23-s + 25-s + 6.74·26-s + 28-s − 2·29-s + 4·31-s + 32-s − 6.74·34-s − 35-s − 6.74·37-s + 4·38-s − 40-s − 2·41-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.5·4-s − 0.447·5-s + 0.377·7-s + 0.353·8-s − 0.316·10-s − 0.301·11-s + 1.87·13-s + 0.267·14-s + 0.250·16-s − 1.63·17-s + 0.917·19-s − 0.223·20-s − 0.213·22-s + 1.82·23-s + 0.200·25-s + 1.32·26-s + 0.188·28-s − 0.371·29-s + 0.718·31-s + 0.176·32-s − 1.15·34-s − 0.169·35-s − 1.10·37-s + 0.648·38-s − 0.158·40-s − 0.312·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6930 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6930 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6930\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11\)
Sign: $1$
Analytic conductor: \(55.3363\)
Root analytic conductor: \(7.43883\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{6930} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6930,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.466855123\)
\(L(\frac12)\) \(\approx\) \(3.466855123\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 \)
5 \( 1 + T \)
7 \( 1 - T \)
11 \( 1 + T \)
good13 \( 1 - 6.74T + 13T^{2} \)
17 \( 1 + 6.74T + 17T^{2} \)
19 \( 1 - 4T + 19T^{2} \)
23 \( 1 - 8.74T + 23T^{2} \)
29 \( 1 + 2T + 29T^{2} \)
31 \( 1 - 4T + 31T^{2} \)
37 \( 1 + 6.74T + 37T^{2} \)
41 \( 1 + 2T + 41T^{2} \)
43 \( 1 + 43T^{2} \)
47 \( 1 + 47T^{2} \)
53 \( 1 + 2T + 53T^{2} \)
59 \( 1 - 4T + 59T^{2} \)
61 \( 1 - 2T + 61T^{2} \)
67 \( 1 + 0.744T + 67T^{2} \)
71 \( 1 - 4T + 71T^{2} \)
73 \( 1 + 2T + 73T^{2} \)
79 \( 1 + 79T^{2} \)
83 \( 1 - 8T + 83T^{2} \)
89 \( 1 + 14.7T + 89T^{2} \)
97 \( 1 + 7.48T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.914512274229050495382198903191, −7.04770537802949067762182993537, −6.62017062678692905289358685678, −5.75864847131751879590436521974, −5.03237215294816000542080387542, −4.40426093580134160755209163698, −3.58070139960632683607869858621, −2.98662528701520603866651991003, −1.87147261135357698737566112171, −0.888460645267886963845295811357, 0.888460645267886963845295811357, 1.87147261135357698737566112171, 2.98662528701520603866651991003, 3.58070139960632683607869858621, 4.40426093580134160755209163698, 5.03237215294816000542080387542, 5.75864847131751879590436521974, 6.62017062678692905289358685678, 7.04770537802949067762182993537, 7.914512274229050495382198903191

Graph of the $Z$-function along the critical line