L(s) = 1 | + (1.53 − 1.11i)2-s + (0.809 − 2.48i)4-s + (−0.309 + 0.951i)7-s + (−0.951 − 2.92i)8-s + (−0.587 + 0.809i)11-s + (0.587 + 1.80i)14-s + (−2.61 − 1.90i)16-s + 1.90i·22-s − 1.90·23-s + (0.309 + 0.951i)25-s + (2.11 + 1.53i)28-s + (0.363 − 1.11i)29-s − 3.07·32-s + (−0.190 + 0.587i)37-s + 1.61·43-s + (1.53 + 2.11i)44-s + ⋯ |
L(s) = 1 | + (1.53 − 1.11i)2-s + (0.809 − 2.48i)4-s + (−0.309 + 0.951i)7-s + (−0.951 − 2.92i)8-s + (−0.587 + 0.809i)11-s + (0.587 + 1.80i)14-s + (−2.61 − 1.90i)16-s + 1.90i·22-s − 1.90·23-s + (0.309 + 0.951i)25-s + (2.11 + 1.53i)28-s + (0.363 − 1.11i)29-s − 3.07·32-s + (−0.190 + 0.587i)37-s + 1.61·43-s + (1.53 + 2.11i)44-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0237 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0237 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.932413979\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.932413979\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 + (0.309 - 0.951i)T \) |
| 11 | \( 1 + (0.587 - 0.809i)T \) |
good | 2 | \( 1 + (-1.53 + 1.11i)T + (0.309 - 0.951i)T^{2} \) |
| 5 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 13 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 17 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 19 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 23 | \( 1 + 1.90T + T^{2} \) |
| 29 | \( 1 + (-0.363 + 1.11i)T + (-0.809 - 0.587i)T^{2} \) |
| 31 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 37 | \( 1 + (0.190 - 0.587i)T + (-0.809 - 0.587i)T^{2} \) |
| 41 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 43 | \( 1 - 1.61T + T^{2} \) |
| 47 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 53 | \( 1 + (-0.951 + 0.690i)T + (0.309 - 0.951i)T^{2} \) |
| 59 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 61 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 67 | \( 1 + 1.61T + T^{2} \) |
| 71 | \( 1 + (0.951 + 0.690i)T + (0.309 + 0.951i)T^{2} \) |
| 73 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 79 | \( 1 + (-1.30 + 0.951i)T + (0.309 - 0.951i)T^{2} \) |
| 83 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.56812824736234657482184728762, −9.986086672877696426946873034380, −9.143294650652830672039370834483, −7.69637260956367440873120483912, −6.37428172056037383727966413749, −5.70369387480298725218689283620, −4.82892934506862879160425075063, −3.88266277948631341195482611912, −2.72843968232655013146566319718, −1.94222105362104834733270621172,
2.70559337289646791062308374238, 3.76844763296416656632883612637, 4.47432701505470193106817488578, 5.62512215873889630024047237436, 6.26527731961912200346848472135, 7.21359993919982870612555439628, 7.88621813117907573768493540191, 8.732942047037164419603714378055, 10.25289305499385228751874090149, 11.04684445354138393598332784555