L(s) = 1 | + (0.5 + 1.53i)2-s + (−1.30 + 0.951i)4-s + (−0.809 + 0.587i)7-s + (−0.809 − 0.587i)8-s + (−0.309 + 0.951i)11-s + (−1.30 − 0.951i)14-s − 1.61·22-s + 1.61·23-s + (−0.809 − 0.587i)25-s + (0.5 − 1.53i)28-s + (0.5 − 0.363i)29-s − 0.999·32-s + (1.30 − 0.951i)37-s + 0.618·43-s + (−0.499 − 1.53i)44-s + ⋯ |
L(s) = 1 | + (0.5 + 1.53i)2-s + (−1.30 + 0.951i)4-s + (−0.809 + 0.587i)7-s + (−0.809 − 0.587i)8-s + (−0.309 + 0.951i)11-s + (−1.30 − 0.951i)14-s − 1.61·22-s + 1.61·23-s + (−0.809 − 0.587i)25-s + (0.5 − 1.53i)28-s + (0.5 − 0.363i)29-s − 0.999·32-s + (1.30 − 0.951i)37-s + 0.618·43-s + (−0.499 − 1.53i)44-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.935 - 0.352i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.935 - 0.352i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.038823066\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.038823066\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 + (0.809 - 0.587i)T \) |
| 11 | \( 1 + (0.309 - 0.951i)T \) |
good | 2 | \( 1 + (-0.5 - 1.53i)T + (-0.809 + 0.587i)T^{2} \) |
| 5 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 13 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 17 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 19 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 23 | \( 1 - 1.61T + T^{2} \) |
| 29 | \( 1 + (-0.5 + 0.363i)T + (0.309 - 0.951i)T^{2} \) |
| 31 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 37 | \( 1 + (-1.30 + 0.951i)T + (0.309 - 0.951i)T^{2} \) |
| 41 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 43 | \( 1 - 0.618T + T^{2} \) |
| 47 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 53 | \( 1 + (0.190 + 0.587i)T + (-0.809 + 0.587i)T^{2} \) |
| 59 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 61 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 67 | \( 1 - 0.618T + T^{2} \) |
| 71 | \( 1 + (0.190 - 0.587i)T + (-0.809 - 0.587i)T^{2} \) |
| 73 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 79 | \( 1 + (-0.190 - 0.587i)T + (-0.809 + 0.587i)T^{2} \) |
| 83 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + (0.809 - 0.587i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.04996261730781445822012537250, −9.861852774098504715332202052564, −9.151808767109608984813179186032, −8.207713317177649744289076363193, −7.34021348965945958675938082989, −6.62505665994720183576115830221, −5.81142417389989693553362732136, −4.96521678598967019602734835720, −3.99256638166382824567383479393, −2.54584367025632143381952511572,
1.06324680569156794495744279965, 2.75526708573957048995305573740, 3.40634035692188625996669185242, 4.42131412829208128617913367106, 5.49103255691421314764657195956, 6.62106527661525161762560285864, 7.74585662591758277278997181193, 9.025252097927546253840036284543, 9.680279837353261690387764943564, 10.59105326045868322331165086057