L(s) = 1 | + (−0.363 + 1.11i)2-s + (−0.309 − 0.224i)4-s + (0.809 + 0.587i)7-s + (−0.587 + 0.427i)8-s + (0.951 − 0.309i)11-s + (−0.951 + 0.690i)14-s + (−0.381 − 1.17i)16-s + 1.17i·22-s − 1.17·23-s + (−0.809 + 0.587i)25-s + (−0.118 − 0.363i)28-s + (1.53 + 1.11i)29-s + 0.726·32-s + (−1.30 − 0.951i)37-s − 0.618·43-s + (−0.363 − 0.118i)44-s + ⋯ |
L(s) = 1 | + (−0.363 + 1.11i)2-s + (−0.309 − 0.224i)4-s + (0.809 + 0.587i)7-s + (−0.587 + 0.427i)8-s + (0.951 − 0.309i)11-s + (−0.951 + 0.690i)14-s + (−0.381 − 1.17i)16-s + 1.17i·22-s − 1.17·23-s + (−0.809 + 0.587i)25-s + (−0.118 − 0.363i)28-s + (1.53 + 1.11i)29-s + 0.726·32-s + (−1.30 − 0.951i)37-s − 0.618·43-s + (−0.363 − 0.118i)44-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.352 - 0.935i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.352 - 0.935i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8778344969\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8778344969\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 + (-0.809 - 0.587i)T \) |
| 11 | \( 1 + (-0.951 + 0.309i)T \) |
good | 2 | \( 1 + (0.363 - 1.11i)T + (-0.809 - 0.587i)T^{2} \) |
| 5 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 13 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 17 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 19 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 23 | \( 1 + 1.17T + T^{2} \) |
| 29 | \( 1 + (-1.53 - 1.11i)T + (0.309 + 0.951i)T^{2} \) |
| 31 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 37 | \( 1 + (1.30 + 0.951i)T + (0.309 + 0.951i)T^{2} \) |
| 41 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 43 | \( 1 + 0.618T + T^{2} \) |
| 47 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 53 | \( 1 + (-0.587 + 1.80i)T + (-0.809 - 0.587i)T^{2} \) |
| 59 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 61 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 67 | \( 1 - 0.618T + T^{2} \) |
| 71 | \( 1 + (0.587 + 1.80i)T + (-0.809 + 0.587i)T^{2} \) |
| 73 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 79 | \( 1 + (-0.190 + 0.587i)T + (-0.809 - 0.587i)T^{2} \) |
| 83 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + (0.809 + 0.587i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.97758878466157446955575407010, −9.800878084237018073496924516987, −8.799549341304837911891959783568, −8.401773541366934433709462861111, −7.45898845806986108300296822785, −6.57973129104627208242070417801, −5.77676202421178713006679659821, −4.89887025060322537751433606281, −3.48915664241004686197831111035, −1.93880397714047038183502271154,
1.27206220601000518827606570920, 2.34249843542874706414799064936, 3.76024141342393917354814362520, 4.51672299429528885848251292800, 6.01736629992327894967062892086, 6.89598351677328568201747165889, 8.067015976430216746431074467422, 8.822033513655187261462923709755, 10.07198391705505832211380474643, 10.15378068704614636933467790192