L(s) = 1 | + (0.866 + 0.5i)2-s − 3-s + (−0.866 − 0.5i)6-s + i·7-s − i·8-s + 9-s + 11-s + (0.866 + 0.5i)13-s + (−0.5 + 0.866i)14-s + (0.5 − 0.866i)16-s + (0.866 + 0.5i)17-s + (0.866 + 0.5i)18-s + (−0.866 + 0.5i)19-s − i·21-s + (0.866 + 0.5i)22-s + ⋯ |
L(s) = 1 | + (0.866 + 0.5i)2-s − 3-s + (−0.866 − 0.5i)6-s + i·7-s − i·8-s + 9-s + 11-s + (0.866 + 0.5i)13-s + (−0.5 + 0.866i)14-s + (0.5 − 0.866i)16-s + (0.866 + 0.5i)17-s + (0.866 + 0.5i)18-s + (−0.866 + 0.5i)19-s − i·21-s + (0.866 + 0.5i)22-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.805 - 0.592i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.805 - 0.592i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.109782521\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.109782521\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + T \) |
| 7 | \( 1 - iT \) |
| 11 | \( 1 - T \) |
good | 2 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 5 | \( 1 + T^{2} \) |
| 13 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 17 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 19 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + T^{2} \) |
| 29 | \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 31 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 41 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 43 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 47 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 59 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 79 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 89 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.92330477451665082125659386301, −9.894967219614745607330756441697, −9.195701347879954574245281395262, −7.997664096990617985039065147102, −6.70000569182616561835799847611, −6.05119525655453434985846127959, −5.65728463326764386465252228210, −4.42711058102940267492558436630, −3.73714501775804461804290552566, −1.60960709184498179182490488074,
1.40107305215020597884959158340, 3.32835334212576607343082347815, 4.12130707457387830698750161082, 4.93167957438484986995322351727, 5.95573859719963939034056248648, 6.83501692388892640027390601428, 7.83109156987871952573731382636, 8.930992622310572585628435029148, 10.15947854165825597136367123252, 10.81569738984036808023525311553