L(s) = 1 | + i·2-s + (0.5 + 0.866i)3-s + (−0.866 + 0.5i)6-s + (−0.866 + 0.5i)7-s + i·8-s + (−0.499 + 0.866i)9-s + (−0.5 − 0.866i)11-s + (0.866 − 0.5i)13-s + (−0.5 − 0.866i)14-s − 16-s + (−0.866 − 0.5i)17-s + (−0.866 − 0.499i)18-s + (0.866 − 0.5i)19-s + (−0.866 − 0.499i)21-s + (0.866 − 0.5i)22-s + ⋯ |
L(s) = 1 | + i·2-s + (0.5 + 0.866i)3-s + (−0.866 + 0.5i)6-s + (−0.866 + 0.5i)7-s + i·8-s + (−0.499 + 0.866i)9-s + (−0.5 − 0.866i)11-s + (0.866 − 0.5i)13-s + (−0.5 − 0.866i)14-s − 16-s + (−0.866 − 0.5i)17-s + (−0.866 − 0.499i)18-s + (0.866 − 0.5i)19-s + (−0.866 − 0.499i)21-s + (0.866 − 0.5i)22-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.723 - 0.690i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.723 - 0.690i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.102966161\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.102966161\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.5 - 0.866i)T \) |
| 7 | \( 1 + (0.866 - 0.5i)T \) |
| 11 | \( 1 + (0.5 + 0.866i)T \) |
good | 2 | \( 1 - iT - T^{2} \) |
| 5 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 13 | \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 17 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 19 | \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 31 | \( 1 - T + T^{2} \) |
| 37 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 41 | \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 43 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 47 | \( 1 + T + T^{2} \) |
| 53 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 59 | \( 1 - T + T^{2} \) |
| 61 | \( 1 + iT - T^{2} \) |
| 67 | \( 1 + T + T^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 79 | \( 1 - iT - T^{2} \) |
| 83 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 89 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.95994078732607686889478669743, −10.01645079374216803575093713105, −8.880792064821051560618500263492, −8.613869824760754229613205342935, −7.52903811744511538487449527159, −6.53009785928943558754203728719, −5.64415250114785742628283147997, −4.94315661270667850243468528440, −3.37068613175471927177015663870, −2.65783343258377523508092618454,
1.29490972019142961416170338714, 2.49042934744665076356249358552, 3.36937252403309540669783543008, 4.41520937647298348663243967221, 6.38695152314526729743914500036, 6.64188996599811139169385321715, 7.74440605865458520449370354285, 8.700875914035872939559683694680, 9.798173203390530836039817679402, 10.23343024055184846641457359900