L(s) = 1 | + (−0.866 + 0.5i)2-s − 3-s + (0.866 − 0.5i)6-s + i·7-s − i·8-s + 9-s + 11-s + (−0.866 + 0.5i)13-s + (−0.5 − 0.866i)14-s + (0.5 + 0.866i)16-s + (−0.866 + 0.5i)17-s + (−0.866 + 0.5i)18-s + (0.866 + 0.5i)19-s − i·21-s + (−0.866 + 0.5i)22-s + ⋯ |
L(s) = 1 | + (−0.866 + 0.5i)2-s − 3-s + (0.866 − 0.5i)6-s + i·7-s − i·8-s + 9-s + 11-s + (−0.866 + 0.5i)13-s + (−0.5 − 0.866i)14-s + (0.5 + 0.866i)16-s + (−0.866 + 0.5i)17-s + (−0.866 + 0.5i)18-s + (0.866 + 0.5i)19-s − i·21-s + (−0.866 + 0.5i)22-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.805 - 0.592i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.805 - 0.592i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.3290186810\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3290186810\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + T \) |
| 7 | \( 1 - iT \) |
| 11 | \( 1 - T \) |
good | 2 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 5 | \( 1 + T^{2} \) |
| 13 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 17 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 19 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 + T^{2} \) |
| 29 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 31 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 41 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 43 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 47 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 59 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 79 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 89 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.02059289622235622184081572064, −9.709131168396113793646659566776, −9.492228642594250159344683578204, −8.465910196334360754818886064538, −7.48349076438773609214535094581, −6.64937005529549119439292382076, −5.95278519445631389242595311095, −4.79662174734155200966589507827, −3.70003429576952060167043918326, −1.72623772032619290438570207430,
0.55864302332698680589390271186, 1.95555743175360643585909157277, 3.83878022620852692052441144924, 4.90954648323117538713824475601, 5.77720704415723209471935105765, 7.07393388190383965141946369460, 7.53156842560459565478828000769, 8.983887958016493938173651549181, 9.666126774225066779772812679028, 10.29258685618434192186331977591