L(s) = 1 | + (−0.0966 − 0.297i)2-s + (0.729 − 0.530i)4-s + (−0.587 − 0.809i)7-s + (−0.481 − 0.349i)8-s + (−0.453 − 0.891i)11-s + (−0.183 + 0.253i)14-s + (0.221 − 0.680i)16-s + (−0.221 + 0.221i)22-s + 1.97i·23-s + (0.809 + 0.587i)25-s + (−0.857 − 0.278i)28-s + (1.44 − 1.04i)29-s − 0.819·32-s + (−0.951 + 0.690i)37-s + 0.618i·43-s + (−0.803 − 0.409i)44-s + ⋯ |
L(s) = 1 | + (−0.0966 − 0.297i)2-s + (0.729 − 0.530i)4-s + (−0.587 − 0.809i)7-s + (−0.481 − 0.349i)8-s + (−0.453 − 0.891i)11-s + (−0.183 + 0.253i)14-s + (0.221 − 0.680i)16-s + (−0.221 + 0.221i)22-s + 1.97i·23-s + (0.809 + 0.587i)25-s + (−0.857 − 0.278i)28-s + (1.44 − 1.04i)29-s − 0.819·32-s + (−0.951 + 0.690i)37-s + 0.618i·43-s + (−0.803 − 0.409i)44-s + ⋯ |
Λ(s)=(=(693s/2ΓC(s)L(s)(0.190+0.981i)Λ(1−s)
Λ(s)=(=(693s/2ΓC(s)L(s)(0.190+0.981i)Λ(1−s)
Degree: |
2 |
Conductor: |
693
= 32⋅7⋅11
|
Sign: |
0.190+0.981i
|
Analytic conductor: |
0.345852 |
Root analytic conductor: |
0.588091 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ693(314,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 693, ( :0), 0.190+0.981i)
|
Particular Values
L(21) |
≈ |
0.9595192121 |
L(21) |
≈ |
0.9595192121 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1+(0.587+0.809i)T |
| 11 | 1+(0.453+0.891i)T |
good | 2 | 1+(0.0966+0.297i)T+(−0.809+0.587i)T2 |
| 5 | 1+(−0.809−0.587i)T2 |
| 13 | 1+(−0.809+0.587i)T2 |
| 17 | 1+(0.809+0.587i)T2 |
| 19 | 1+(0.309+0.951i)T2 |
| 23 | 1−1.97iT−T2 |
| 29 | 1+(−1.44+1.04i)T+(0.309−0.951i)T2 |
| 31 | 1+(0.809−0.587i)T2 |
| 37 | 1+(0.951−0.690i)T+(0.309−0.951i)T2 |
| 41 | 1+(−0.309−0.951i)T2 |
| 43 | 1−0.618iT−T2 |
| 47 | 1+(0.309+0.951i)T2 |
| 53 | 1+(−1.69+0.550i)T+(0.809−0.587i)T2 |
| 59 | 1+(0.309−0.951i)T2 |
| 61 | 1+(−0.809−0.587i)T2 |
| 67 | 1−0.618T+T2 |
| 71 | 1+(0.863+0.280i)T+(0.809+0.587i)T2 |
| 73 | 1+(0.309−0.951i)T2 |
| 79 | 1+(1.80−0.587i)T+(0.809−0.587i)T2 |
| 83 | 1+(0.809+0.587i)T2 |
| 89 | 1+T2 |
| 97 | 1+(0.809−0.587i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.37594545041502237276629913250, −9.951886311050152722803010337681, −8.910670978511422176849034732771, −7.74804915904844083266723294502, −6.92490468638593305273735200778, −6.09563358329533034294729899154, −5.16992503337588871658804787849, −3.65045408247538775816267399231, −2.79757146720682771443586220879, −1.16817165119937264475905190244,
2.27602869291818794927641599057, 3.01177590942118824597178671337, 4.49216267179879403719268958528, 5.64094936024933737088868088790, 6.67387597092873804679454244932, 7.13398731649512979840997806798, 8.453802646447462222938220823839, 8.792458705505487334432440055939, 10.16942601512139081162810224803, 10.68151005833140564249556600798