L(s) = 1 | + (0.610 + 1.87i)2-s + (−2.34 + 1.70i)4-s + (0.587 + 0.809i)7-s + (−3.03 − 2.20i)8-s + (−0.891 + 0.453i)11-s + (−1.16 + 1.59i)14-s + (1.39 − 4.29i)16-s + (−1.39 − 1.39i)22-s + 0.312i·23-s + (0.809 + 0.587i)25-s + (−2.76 − 0.896i)28-s + (0.734 − 0.533i)29-s + 5.17·32-s + (0.951 − 0.690i)37-s − 0.618i·43-s + (1.31 − 2.58i)44-s + ⋯ |
L(s) = 1 | + (0.610 + 1.87i)2-s + (−2.34 + 1.70i)4-s + (0.587 + 0.809i)7-s + (−3.03 − 2.20i)8-s + (−0.891 + 0.453i)11-s + (−1.16 + 1.59i)14-s + (1.39 − 4.29i)16-s + (−1.39 − 1.39i)22-s + 0.312i·23-s + (0.809 + 0.587i)25-s + (−2.76 − 0.896i)28-s + (0.734 − 0.533i)29-s + 5.17·32-s + (0.951 − 0.690i)37-s − 0.618i·43-s + (1.31 − 2.58i)44-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.981 + 0.190i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.981 + 0.190i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.041732063\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.041732063\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 + (-0.587 - 0.809i)T \) |
| 11 | \( 1 + (0.891 - 0.453i)T \) |
good | 2 | \( 1 + (-0.610 - 1.87i)T + (-0.809 + 0.587i)T^{2} \) |
| 5 | \( 1 + (-0.809 - 0.587i)T^{2} \) |
| 13 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 17 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 19 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 23 | \( 1 - 0.312iT - T^{2} \) |
| 29 | \( 1 + (-0.734 + 0.533i)T + (0.309 - 0.951i)T^{2} \) |
| 31 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 37 | \( 1 + (-0.951 + 0.690i)T + (0.309 - 0.951i)T^{2} \) |
| 41 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 43 | \( 1 + 0.618iT - T^{2} \) |
| 47 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 53 | \( 1 + (0.863 - 0.280i)T + (0.809 - 0.587i)T^{2} \) |
| 59 | \( 1 + (0.309 - 0.951i)T^{2} \) |
| 61 | \( 1 + (-0.809 - 0.587i)T^{2} \) |
| 67 | \( 1 - 0.618T + T^{2} \) |
| 71 | \( 1 + (-1.69 - 0.550i)T + (0.809 + 0.587i)T^{2} \) |
| 73 | \( 1 + (0.309 - 0.951i)T^{2} \) |
| 79 | \( 1 + (1.80 - 0.587i)T + (0.809 - 0.587i)T^{2} \) |
| 83 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 + (0.809 - 0.587i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.30196275875975531688437911923, −9.858467077628139061516206599224, −8.999192987703209244339980244780, −8.220532505356667195703656576494, −7.59925596574743736521618064292, −6.70168004280478686408023359769, −5.68565932233473949623677833066, −5.11066961776394893048440709770, −4.23526520053657064490120067503, −2.82611081045605333172500756675,
1.04958964635061490947976977415, 2.46170051947185904185253277059, 3.41433405185479067865796405359, 4.54351534227284923568406019242, 5.08789571323968182563021057038, 6.33037243759821067634695688062, 7.976490598633993430119079968499, 8.738194032319947124325536024785, 9.858537902767048164630986456542, 10.48091789185026035367920581138