L(s) = 1 | + (−1.44 + 1.04i)2-s + (0.672 − 2.06i)4-s + (−0.951 − 0.309i)7-s + (0.647 + 1.99i)8-s + (−0.156 − 0.987i)11-s + (1.69 − 0.550i)14-s + (−1.26 − 0.915i)16-s + (1.26 + 1.26i)22-s − 0.907i·23-s + (−0.309 − 0.951i)25-s + (−1.27 + 1.76i)28-s + (0.610 − 1.87i)29-s + 0.680·32-s + (0.587 − 1.80i)37-s + 1.61i·43-s + (−2.14 − 0.340i)44-s + ⋯ |
L(s) = 1 | + (−1.44 + 1.04i)2-s + (0.672 − 2.06i)4-s + (−0.951 − 0.309i)7-s + (0.647 + 1.99i)8-s + (−0.156 − 0.987i)11-s + (1.69 − 0.550i)14-s + (−1.26 − 0.915i)16-s + (1.26 + 1.26i)22-s − 0.907i·23-s + (−0.309 − 0.951i)25-s + (−1.27 + 1.76i)28-s + (0.610 − 1.87i)29-s + 0.680·32-s + (0.587 − 1.80i)37-s + 1.61i·43-s + (−2.14 − 0.340i)44-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.915 + 0.402i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.915 + 0.402i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.3547899557\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3547899557\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 + (0.951 + 0.309i)T \) |
| 11 | \( 1 + (0.156 + 0.987i)T \) |
good | 2 | \( 1 + (1.44 - 1.04i)T + (0.309 - 0.951i)T^{2} \) |
| 5 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 13 | \( 1 + (0.309 - 0.951i)T^{2} \) |
| 17 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 19 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 23 | \( 1 + 0.907iT - T^{2} \) |
| 29 | \( 1 + (-0.610 + 1.87i)T + (-0.809 - 0.587i)T^{2} \) |
| 31 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 37 | \( 1 + (-0.587 + 1.80i)T + (-0.809 - 0.587i)T^{2} \) |
| 41 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 43 | \( 1 - 1.61iT - T^{2} \) |
| 47 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 53 | \( 1 + (-1.16 - 1.59i)T + (-0.309 + 0.951i)T^{2} \) |
| 59 | \( 1 + (-0.809 - 0.587i)T^{2} \) |
| 61 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 67 | \( 1 + 1.61T + T^{2} \) |
| 71 | \( 1 + (-0.183 + 0.253i)T + (-0.309 - 0.951i)T^{2} \) |
| 73 | \( 1 + (-0.809 - 0.587i)T^{2} \) |
| 79 | \( 1 + (0.690 + 0.951i)T + (-0.309 + 0.951i)T^{2} \) |
| 83 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.31458672137530169813646691655, −9.593077544384556870978776908902, −8.826752949766125449138360006151, −8.041314114754587497754515148825, −7.29459194061942389160496022399, −6.14170304747976324656167035471, −6.00711249706515328426987156202, −4.26312641794211840402204527469, −2.63805802925140126106760694773, −0.63545503605285065932662652634,
1.57709066657913199015786031238, 2.79345917471770236625237965966, 3.68466531739455021112899871360, 5.27749927515240420867514017294, 6.78620172872381486498921003079, 7.40846554457306675037913149212, 8.512666702152242306642063934290, 9.197672470766826269496999451744, 9.932704549401755871653071963840, 10.39792223013185484570675186820