Properties

Label 2-693-231.230-c0-0-3
Degree $2$
Conductor $693$
Sign $0.985 + 0.169i$
Analytic cond. $0.345852$
Root an. cond. $0.588091$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.41·2-s + 1.00·4-s i·7-s + (0.707 + 0.707i)11-s − 1.41i·14-s − 0.999·16-s + (1.00 + 1.00i)22-s + 1.41i·23-s − 25-s − 1.00i·28-s − 1.41·29-s − 1.41·32-s − 2i·43-s + (0.707 + 0.707i)44-s + 2.00i·46-s + ⋯
L(s)  = 1  + 1.41·2-s + 1.00·4-s i·7-s + (0.707 + 0.707i)11-s − 1.41i·14-s − 0.999·16-s + (1.00 + 1.00i)22-s + 1.41i·23-s − 25-s − 1.00i·28-s − 1.41·29-s − 1.41·32-s − 2i·43-s + (0.707 + 0.707i)44-s + 2.00i·46-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.985 + 0.169i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.985 + 0.169i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(693\)    =    \(3^{2} \cdot 7 \cdot 11\)
Sign: $0.985 + 0.169i$
Analytic conductor: \(0.345852\)
Root analytic conductor: \(0.588091\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{693} (692, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 693,\ (\ :0),\ 0.985 + 0.169i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.807502548\)
\(L(\frac12)\) \(\approx\) \(1.807502548\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 + iT \)
11 \( 1 + (-0.707 - 0.707i)T \)
good2 \( 1 - 1.41T + T^{2} \)
5 \( 1 + T^{2} \)
13 \( 1 + T^{2} \)
17 \( 1 - T^{2} \)
19 \( 1 + T^{2} \)
23 \( 1 - 1.41iT - T^{2} \)
29 \( 1 + 1.41T + T^{2} \)
31 \( 1 - T^{2} \)
37 \( 1 + T^{2} \)
41 \( 1 - T^{2} \)
43 \( 1 + 2iT - T^{2} \)
47 \( 1 + T^{2} \)
53 \( 1 - 1.41iT - T^{2} \)
59 \( 1 + T^{2} \)
61 \( 1 + T^{2} \)
67 \( 1 - 2T + T^{2} \)
71 \( 1 + 1.41iT - T^{2} \)
73 \( 1 + T^{2} \)
79 \( 1 - T^{2} \)
83 \( 1 - T^{2} \)
89 \( 1 + T^{2} \)
97 \( 1 - T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.94459366472756590110234086143, −9.836336853828360550811599267837, −9.105044716669220011842860157970, −7.62722574924534401548871332073, −7.00668484461153593923150670846, −5.98679320596978415089870214585, −5.09223585859111139745386502447, −4.02400369787465170299237405787, −3.57419044443966412427269287338, −1.91950353999548897104714992072, 2.20328862225480509068748782173, 3.29845231913263561702751950053, 4.23419515357445991036304932832, 5.28836838029265942518065760297, 6.02727282156005852611545332929, 6.69492256948612319727346345664, 8.124457640821783930041700643133, 8.961978022691072382958075945634, 9.793287747494193724534950925800, 11.31470028319016370870012503410

Graph of the $Z$-function along the critical line