L(s) = 1 | − 1.41·2-s + 1.00·4-s + i·7-s + (−0.707 + 0.707i)11-s − 1.41i·14-s − 0.999·16-s + (1.00 − 1.00i)22-s + 1.41i·23-s − 25-s + 1.00i·28-s + 1.41·29-s + 1.41·32-s + 2i·43-s + (−0.707 + 0.707i)44-s − 2.00i·46-s + ⋯ |
L(s) = 1 | − 1.41·2-s + 1.00·4-s + i·7-s + (−0.707 + 0.707i)11-s − 1.41i·14-s − 0.999·16-s + (1.00 − 1.00i)22-s + 1.41i·23-s − 25-s + 1.00i·28-s + 1.41·29-s + 1.41·32-s + 2i·43-s + (−0.707 + 0.707i)44-s − 2.00i·46-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.169 - 0.985i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.169 - 0.985i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.3993282220\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3993282220\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 - iT \) |
| 11 | \( 1 + (0.707 - 0.707i)T \) |
good | 2 | \( 1 + 1.41T + T^{2} \) |
| 5 | \( 1 + T^{2} \) |
| 13 | \( 1 + T^{2} \) |
| 17 | \( 1 - T^{2} \) |
| 19 | \( 1 + T^{2} \) |
| 23 | \( 1 - 1.41iT - T^{2} \) |
| 29 | \( 1 - 1.41T + T^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 37 | \( 1 + T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 - 2iT - T^{2} \) |
| 47 | \( 1 + T^{2} \) |
| 53 | \( 1 - 1.41iT - T^{2} \) |
| 59 | \( 1 + T^{2} \) |
| 61 | \( 1 + T^{2} \) |
| 67 | \( 1 - 2T + T^{2} \) |
| 71 | \( 1 + 1.41iT - T^{2} \) |
| 73 | \( 1 + T^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.62572838541890158139887712814, −9.676584719347191205127290954832, −9.367187546336412953914951633609, −8.218978160547024675484526126859, −7.79785749450174846199385830982, −6.72991067993121959940788052467, −5.62219871639324428761235871891, −4.54618691855798023683318831545, −2.81745066199515861802531291347, −1.69081418537146588775779779606,
0.71140995498141051228411297980, 2.34117007025028616547990492840, 3.85222700926870261178291696546, 5.03128552597349329113873348737, 6.44095349435658900833444183594, 7.21442380919218726231741030513, 8.172069181875943266583177641645, 8.560140653364413495650812943524, 9.761863802614826319558208315079, 10.35604468254015583719399763172