L(s) = 1 | + (0.0966 − 0.297i)2-s + (0.729 + 0.530i)4-s + (−0.587 + 0.809i)7-s + (0.481 − 0.349i)8-s + (0.453 − 0.891i)11-s + (0.183 + 0.253i)14-s + (0.221 + 0.680i)16-s + (−0.221 − 0.221i)22-s + 1.97i·23-s + (0.809 − 0.587i)25-s + (−0.857 + 0.278i)28-s + (−1.44 − 1.04i)29-s + 0.819·32-s + (−0.951 − 0.690i)37-s − 0.618i·43-s + (0.803 − 0.409i)44-s + ⋯ |
L(s) = 1 | + (0.0966 − 0.297i)2-s + (0.729 + 0.530i)4-s + (−0.587 + 0.809i)7-s + (0.481 − 0.349i)8-s + (0.453 − 0.891i)11-s + (0.183 + 0.253i)14-s + (0.221 + 0.680i)16-s + (−0.221 − 0.221i)22-s + 1.97i·23-s + (0.809 − 0.587i)25-s + (−0.857 + 0.278i)28-s + (−1.44 − 1.04i)29-s + 0.819·32-s + (−0.951 − 0.690i)37-s − 0.618i·43-s + (0.803 − 0.409i)44-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.989 - 0.147i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.989 - 0.147i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.135531082\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.135531082\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 + (0.587 - 0.809i)T \) |
| 11 | \( 1 + (-0.453 + 0.891i)T \) |
good | 2 | \( 1 + (-0.0966 + 0.297i)T + (-0.809 - 0.587i)T^{2} \) |
| 5 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 13 | \( 1 + (-0.809 - 0.587i)T^{2} \) |
| 17 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 19 | \( 1 + (0.309 - 0.951i)T^{2} \) |
| 23 | \( 1 - 1.97iT - T^{2} \) |
| 29 | \( 1 + (1.44 + 1.04i)T + (0.309 + 0.951i)T^{2} \) |
| 31 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 37 | \( 1 + (0.951 + 0.690i)T + (0.309 + 0.951i)T^{2} \) |
| 41 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 43 | \( 1 + 0.618iT - T^{2} \) |
| 47 | \( 1 + (0.309 - 0.951i)T^{2} \) |
| 53 | \( 1 + (1.69 + 0.550i)T + (0.809 + 0.587i)T^{2} \) |
| 59 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 61 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 67 | \( 1 - 0.618T + T^{2} \) |
| 71 | \( 1 + (-0.863 + 0.280i)T + (0.809 - 0.587i)T^{2} \) |
| 73 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 79 | \( 1 + (1.80 + 0.587i)T + (0.809 + 0.587i)T^{2} \) |
| 83 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 + (0.809 + 0.587i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.96035597988833583256684045708, −9.805715539871308135315063452952, −9.027147898337136546181367259995, −8.101487919443979394264245239725, −7.16195617016528830367786657062, −6.23857367530578896398124105634, −5.45695058074476402527616468711, −3.81393599566229795282821186857, −3.11916245426101251839014260476, −1.89201622697530961267569647771,
1.53608569331353593124517473024, 2.96516354527302468125286854457, 4.29780270808106700336652413382, 5.26252538774297354211240928602, 6.56697787604380573756304544863, 6.85882699432393776811435476607, 7.78893191747095180800801862526, 9.044998901137301368863374005594, 9.934857707431957513819544215662, 10.62603049414089980484833449732