Properties

Label 2-693-1.1-c3-0-75
Degree $2$
Conductor $693$
Sign $-1$
Analytic cond. $40.8883$
Root an. cond. $6.39439$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5.05·2-s + 17.5·4-s − 12.9·5-s − 7·7-s + 48.4·8-s − 65.4·10-s − 11·11-s − 55.5·13-s − 35.3·14-s + 104.·16-s − 59.2·17-s − 33.1·19-s − 227.·20-s − 55.6·22-s − 26.0·23-s + 42.5·25-s − 280.·26-s − 123.·28-s + 188.·29-s − 278.·31-s + 139.·32-s − 299.·34-s + 90.5·35-s + 201.·37-s − 167.·38-s − 626.·40-s + 126.·41-s + ⋯
L(s)  = 1  + 1.78·2-s + 2.19·4-s − 1.15·5-s − 0.377·7-s + 2.13·8-s − 2.06·10-s − 0.301·11-s − 1.18·13-s − 0.675·14-s + 1.62·16-s − 0.845·17-s − 0.400·19-s − 2.54·20-s − 0.539·22-s − 0.236·23-s + 0.340·25-s − 2.11·26-s − 0.830·28-s + 1.20·29-s − 1.61·31-s + 0.772·32-s − 1.51·34-s + 0.437·35-s + 0.895·37-s − 0.716·38-s − 2.47·40-s + 0.482·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(693\)    =    \(3^{2} \cdot 7 \cdot 11\)
Sign: $-1$
Analytic conductor: \(40.8883\)
Root analytic conductor: \(6.39439\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 693,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 + 7T \)
11 \( 1 + 11T \)
good2 \( 1 - 5.05T + 8T^{2} \)
5 \( 1 + 12.9T + 125T^{2} \)
13 \( 1 + 55.5T + 2.19e3T^{2} \)
17 \( 1 + 59.2T + 4.91e3T^{2} \)
19 \( 1 + 33.1T + 6.85e3T^{2} \)
23 \( 1 + 26.0T + 1.21e4T^{2} \)
29 \( 1 - 188.T + 2.43e4T^{2} \)
31 \( 1 + 278.T + 2.97e4T^{2} \)
37 \( 1 - 201.T + 5.06e4T^{2} \)
41 \( 1 - 126.T + 6.89e4T^{2} \)
43 \( 1 + 454.T + 7.95e4T^{2} \)
47 \( 1 - 129.T + 1.03e5T^{2} \)
53 \( 1 + 79.8T + 1.48e5T^{2} \)
59 \( 1 - 593.T + 2.05e5T^{2} \)
61 \( 1 + 49.8T + 2.26e5T^{2} \)
67 \( 1 - 295.T + 3.00e5T^{2} \)
71 \( 1 + 546.T + 3.57e5T^{2} \)
73 \( 1 + 809.T + 3.89e5T^{2} \)
79 \( 1 + 375.T + 4.93e5T^{2} \)
83 \( 1 + 85.9T + 5.71e5T^{2} \)
89 \( 1 + 750.T + 7.04e5T^{2} \)
97 \( 1 + 451.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.914581933846128645694264623392, −8.531221814888518887813241355634, −7.43908560853462589685585361744, −6.88384612999257518466981169394, −5.83209613863528777573237939348, −4.77636070803062740776977182768, −4.17270610490476072193330805663, −3.20097051193696083071281728439, −2.23792866836422627527643145512, 0, 2.23792866836422627527643145512, 3.20097051193696083071281728439, 4.17270610490476072193330805663, 4.77636070803062740776977182768, 5.83209613863528777573237939348, 6.88384612999257518466981169394, 7.43908560853462589685585361744, 8.531221814888518887813241355634, 9.914581933846128645694264623392

Graph of the $Z$-function along the critical line