Properties

Label 2-693-1.1-c3-0-74
Degree $2$
Conductor $693$
Sign $-1$
Analytic cond. $40.8883$
Root an. cond. $6.39439$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.65·2-s + 5.36·4-s + 10.0·5-s − 7·7-s − 9.64·8-s + 36.8·10-s − 11·11-s − 84.5·13-s − 25.5·14-s − 78.1·16-s + 38.2·17-s − 127.·19-s + 54.0·20-s − 40.2·22-s − 140.·23-s − 23.3·25-s − 309.·26-s − 37.5·28-s + 116.·29-s + 338.·31-s − 208.·32-s + 139.·34-s − 70.5·35-s − 75.3·37-s − 465.·38-s − 97.2·40-s + 22.4·41-s + ⋯
L(s)  = 1  + 1.29·2-s + 0.670·4-s + 0.901·5-s − 0.377·7-s − 0.426·8-s + 1.16·10-s − 0.301·11-s − 1.80·13-s − 0.488·14-s − 1.22·16-s + 0.545·17-s − 1.53·19-s + 0.604·20-s − 0.389·22-s − 1.27·23-s − 0.186·25-s − 2.33·26-s − 0.253·28-s + 0.747·29-s + 1.96·31-s − 1.15·32-s + 0.705·34-s − 0.340·35-s − 0.334·37-s − 1.98·38-s − 0.384·40-s + 0.0854·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(693\)    =    \(3^{2} \cdot 7 \cdot 11\)
Sign: $-1$
Analytic conductor: \(40.8883\)
Root analytic conductor: \(6.39439\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 693,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 + 7T \)
11 \( 1 + 11T \)
good2 \( 1 - 3.65T + 8T^{2} \)
5 \( 1 - 10.0T + 125T^{2} \)
13 \( 1 + 84.5T + 2.19e3T^{2} \)
17 \( 1 - 38.2T + 4.91e3T^{2} \)
19 \( 1 + 127.T + 6.85e3T^{2} \)
23 \( 1 + 140.T + 1.21e4T^{2} \)
29 \( 1 - 116.T + 2.43e4T^{2} \)
31 \( 1 - 338.T + 2.97e4T^{2} \)
37 \( 1 + 75.3T + 5.06e4T^{2} \)
41 \( 1 - 22.4T + 6.89e4T^{2} \)
43 \( 1 - 181.T + 7.95e4T^{2} \)
47 \( 1 + 300.T + 1.03e5T^{2} \)
53 \( 1 - 31.8T + 1.48e5T^{2} \)
59 \( 1 - 68.3T + 2.05e5T^{2} \)
61 \( 1 + 145.T + 2.26e5T^{2} \)
67 \( 1 + 668.T + 3.00e5T^{2} \)
71 \( 1 + 727.T + 3.57e5T^{2} \)
73 \( 1 + 416.T + 3.89e5T^{2} \)
79 \( 1 - 458.T + 4.93e5T^{2} \)
83 \( 1 + 355.T + 5.71e5T^{2} \)
89 \( 1 - 1.24e3T + 7.04e5T^{2} \)
97 \( 1 + 935.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.973086913688407793166812651961, −8.858134002180460963118944061051, −7.71436440163878684481165077571, −6.48999357559035646455439210864, −5.97908099531001712952082097493, −4.96037070827037694424298004050, −4.26722120098286793240652316473, −2.87829508660891421682969294003, −2.16301159074055280804543063375, 0, 2.16301159074055280804543063375, 2.87829508660891421682969294003, 4.26722120098286793240652316473, 4.96037070827037694424298004050, 5.97908099531001712952082097493, 6.48999357559035646455439210864, 7.71436440163878684481165077571, 8.858134002180460963118944061051, 9.973086913688407793166812651961

Graph of the $Z$-function along the critical line