Properties

Label 2-693-1.1-c3-0-50
Degree $2$
Conductor $693$
Sign $-1$
Analytic cond. $40.8883$
Root an. cond. $6.39439$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.56·2-s + 4.68·4-s + 5.68·5-s + 7·7-s + 11.8·8-s − 20.2·10-s + 11·11-s − 39.3·13-s − 24.9·14-s − 79.5·16-s + 64.2·17-s − 82.9·19-s + 26.6·20-s − 39.1·22-s + 11.5·23-s − 92.6·25-s + 139.·26-s + 32.7·28-s − 128.·29-s − 101.·31-s + 188.·32-s − 228.·34-s + 39.7·35-s + 188.·37-s + 295.·38-s + 67.1·40-s − 198.·41-s + ⋯
L(s)  = 1  − 1.25·2-s + 0.585·4-s + 0.508·5-s + 0.377·7-s + 0.521·8-s − 0.640·10-s + 0.301·11-s − 0.838·13-s − 0.475·14-s − 1.24·16-s + 0.916·17-s − 1.00·19-s + 0.297·20-s − 0.379·22-s + 0.104·23-s − 0.741·25-s + 1.05·26-s + 0.221·28-s − 0.822·29-s − 0.587·31-s + 1.04·32-s − 1.15·34-s + 0.192·35-s + 0.835·37-s + 1.26·38-s + 0.265·40-s − 0.755·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(693\)    =    \(3^{2} \cdot 7 \cdot 11\)
Sign: $-1$
Analytic conductor: \(40.8883\)
Root analytic conductor: \(6.39439\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 693,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 - 7T \)
11 \( 1 - 11T \)
good2 \( 1 + 3.56T + 8T^{2} \)
5 \( 1 - 5.68T + 125T^{2} \)
13 \( 1 + 39.3T + 2.19e3T^{2} \)
17 \( 1 - 64.2T + 4.91e3T^{2} \)
19 \( 1 + 82.9T + 6.85e3T^{2} \)
23 \( 1 - 11.5T + 1.21e4T^{2} \)
29 \( 1 + 128.T + 2.43e4T^{2} \)
31 \( 1 + 101.T + 2.97e4T^{2} \)
37 \( 1 - 188.T + 5.06e4T^{2} \)
41 \( 1 + 198.T + 6.89e4T^{2} \)
43 \( 1 - 231.T + 7.95e4T^{2} \)
47 \( 1 - 285.T + 1.03e5T^{2} \)
53 \( 1 + 202.T + 1.48e5T^{2} \)
59 \( 1 + 103.T + 2.05e5T^{2} \)
61 \( 1 + 382.T + 2.26e5T^{2} \)
67 \( 1 + 259.T + 3.00e5T^{2} \)
71 \( 1 + 352.T + 3.57e5T^{2} \)
73 \( 1 - 490.T + 3.89e5T^{2} \)
79 \( 1 - 141.T + 4.93e5T^{2} \)
83 \( 1 - 192.T + 5.71e5T^{2} \)
89 \( 1 - 423.T + 7.04e5T^{2} \)
97 \( 1 + 1.09e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.531035240868883419639633291960, −8.968459757617524801808675741112, −7.920439516533049504713021588117, −7.38875864869095962304574483612, −6.22981283637926550830252299727, −5.15031104586740018230284077222, −4.03362215639515154882147189413, −2.35792862686512919898333997571, −1.38836932986094169123160992142, 0, 1.38836932986094169123160992142, 2.35792862686512919898333997571, 4.03362215639515154882147189413, 5.15031104586740018230284077222, 6.22981283637926550830252299727, 7.38875864869095962304574483612, 7.920439516533049504713021588117, 8.968459757617524801808675741112, 9.531035240868883419639633291960

Graph of the $Z$-function along the critical line