Properties

Label 2-693-1.1-c3-0-45
Degree $2$
Conductor $693$
Sign $-1$
Analytic cond. $40.8883$
Root an. cond. $6.39439$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.09·2-s + 1.56·4-s + 0.265·5-s + 7·7-s + 19.9·8-s − 0.820·10-s − 11·11-s + 9.99·13-s − 21.6·14-s − 74.0·16-s − 103.·17-s + 54.7·19-s + 0.415·20-s + 34.0·22-s + 26.6·23-s − 124.·25-s − 30.9·26-s + 10.9·28-s + 17.2·29-s + 202.·31-s + 69.8·32-s + 320.·34-s + 1.85·35-s + 244.·37-s − 169.·38-s + 5.28·40-s − 306.·41-s + ⋯
L(s)  = 1  − 1.09·2-s + 0.195·4-s + 0.0237·5-s + 0.377·7-s + 0.879·8-s − 0.0259·10-s − 0.301·11-s + 0.213·13-s − 0.413·14-s − 1.15·16-s − 1.47·17-s + 0.660·19-s + 0.00464·20-s + 0.329·22-s + 0.241·23-s − 0.999·25-s − 0.233·26-s + 0.0739·28-s + 0.110·29-s + 1.17·31-s + 0.385·32-s + 1.61·34-s + 0.00897·35-s + 1.08·37-s − 0.722·38-s + 0.0208·40-s − 1.16·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(693\)    =    \(3^{2} \cdot 7 \cdot 11\)
Sign: $-1$
Analytic conductor: \(40.8883\)
Root analytic conductor: \(6.39439\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 693,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 - 7T \)
11 \( 1 + 11T \)
good2 \( 1 + 3.09T + 8T^{2} \)
5 \( 1 - 0.265T + 125T^{2} \)
13 \( 1 - 9.99T + 2.19e3T^{2} \)
17 \( 1 + 103.T + 4.91e3T^{2} \)
19 \( 1 - 54.7T + 6.85e3T^{2} \)
23 \( 1 - 26.6T + 1.21e4T^{2} \)
29 \( 1 - 17.2T + 2.43e4T^{2} \)
31 \( 1 - 202.T + 2.97e4T^{2} \)
37 \( 1 - 244.T + 5.06e4T^{2} \)
41 \( 1 + 306.T + 6.89e4T^{2} \)
43 \( 1 - 330.T + 7.95e4T^{2} \)
47 \( 1 + 74.6T + 1.03e5T^{2} \)
53 \( 1 + 428.T + 1.48e5T^{2} \)
59 \( 1 - 350.T + 2.05e5T^{2} \)
61 \( 1 - 153.T + 2.26e5T^{2} \)
67 \( 1 - 192.T + 3.00e5T^{2} \)
71 \( 1 + 821.T + 3.57e5T^{2} \)
73 \( 1 + 727.T + 3.89e5T^{2} \)
79 \( 1 + 410.T + 4.93e5T^{2} \)
83 \( 1 - 289.T + 5.71e5T^{2} \)
89 \( 1 - 225.T + 7.04e5T^{2} \)
97 \( 1 + 420.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.567872713609154145958480619535, −8.778067674729852093865236893610, −8.073886726274740451745246153757, −7.30128848993785672052713935960, −6.26239086316145199004627109373, −4.98363029724105475305789708952, −4.12710801840638612264800249143, −2.50537166313794527321017521796, −1.29306592444508136177593595062, 0, 1.29306592444508136177593595062, 2.50537166313794527321017521796, 4.12710801840638612264800249143, 4.98363029724105475305789708952, 6.26239086316145199004627109373, 7.30128848993785672052713935960, 8.073886726274740451745246153757, 8.778067674729852093865236893610, 9.567872713609154145958480619535

Graph of the $Z$-function along the critical line