L(s) = 1 | − 0.315·2-s − 7.90·4-s − 5.90·5-s − 7·7-s + 5.02·8-s + 1.86·10-s + 11·11-s + 2.91·13-s + 2.21·14-s + 61.6·16-s + 60.0·17-s + 69.8·19-s + 46.6·20-s − 3.47·22-s + 120.·23-s − 90.0·25-s − 0.919·26-s + 55.3·28-s − 174.·29-s + 44.5·31-s − 59.6·32-s − 18.9·34-s + 41.3·35-s − 271.·37-s − 22.0·38-s − 29.6·40-s − 355.·41-s + ⋯ |
L(s) = 1 | − 0.111·2-s − 0.987·4-s − 0.528·5-s − 0.377·7-s + 0.221·8-s + 0.0590·10-s + 0.301·11-s + 0.0621·13-s + 0.0422·14-s + 0.962·16-s + 0.856·17-s + 0.843·19-s + 0.521·20-s − 0.0336·22-s + 1.09·23-s − 0.720·25-s − 0.00693·26-s + 0.373·28-s − 1.11·29-s + 0.258·31-s − 0.329·32-s − 0.0956·34-s + 0.199·35-s − 1.20·37-s − 0.0942·38-s − 0.117·40-s − 1.35·41-s + ⋯ |
Λ(s)=(=(693s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(693s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1+7T |
| 11 | 1−11T |
good | 2 | 1+0.315T+8T2 |
| 5 | 1+5.90T+125T2 |
| 13 | 1−2.91T+2.19e3T2 |
| 17 | 1−60.0T+4.91e3T2 |
| 19 | 1−69.8T+6.85e3T2 |
| 23 | 1−120.T+1.21e4T2 |
| 29 | 1+174.T+2.43e4T2 |
| 31 | 1−44.5T+2.97e4T2 |
| 37 | 1+271.T+5.06e4T2 |
| 41 | 1+355.T+6.89e4T2 |
| 43 | 1−545.T+7.95e4T2 |
| 47 | 1−413.T+1.03e5T2 |
| 53 | 1+709.T+1.48e5T2 |
| 59 | 1+358.T+2.05e5T2 |
| 61 | 1+574.T+2.26e5T2 |
| 67 | 1−457.T+3.00e5T2 |
| 71 | 1+87.8T+3.57e5T2 |
| 73 | 1−403.T+3.89e5T2 |
| 79 | 1+195.T+4.93e5T2 |
| 83 | 1+1.40e3T+5.71e5T2 |
| 89 | 1+1.25e3T+7.04e5T2 |
| 97 | 1−1.77e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.483927545814833006735917263696, −8.935989150057316260350863846174, −7.87963153030738317908763155338, −7.23726960336147070992319373448, −5.88678598443091446871308240639, −5.03746742517129207158523825681, −3.93539683846517281856013301383, −3.18509388841564434052980060059, −1.25960653393990835476016972010, 0,
1.25960653393990835476016972010, 3.18509388841564434052980060059, 3.93539683846517281856013301383, 5.03746742517129207158523825681, 5.88678598443091446871308240639, 7.23726960336147070992319373448, 7.87963153030738317908763155338, 8.935989150057316260350863846174, 9.483927545814833006735917263696