Properties

Label 2-693-1.1-c3-0-43
Degree $2$
Conductor $693$
Sign $-1$
Analytic cond. $40.8883$
Root an. cond. $6.39439$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.232·2-s − 7.94·4-s − 7.75·5-s − 7·7-s + 3.71·8-s + 1.80·10-s − 11·11-s + 59.4·13-s + 1.63·14-s + 62.7·16-s + 45.4·17-s + 111.·19-s + 61.6·20-s + 2.56·22-s − 105.·23-s − 64.8·25-s − 13.8·26-s + 55.6·28-s − 10.0·29-s + 315.·31-s − 44.3·32-s − 10.5·34-s + 54.3·35-s − 182.·37-s − 26.0·38-s − 28.8·40-s − 487.·41-s + ⋯
L(s)  = 1  − 0.0823·2-s − 0.993·4-s − 0.693·5-s − 0.377·7-s + 0.164·8-s + 0.0571·10-s − 0.301·11-s + 1.26·13-s + 0.0311·14-s + 0.979·16-s + 0.648·17-s + 1.34·19-s + 0.689·20-s + 0.0248·22-s − 0.954·23-s − 0.518·25-s − 0.104·26-s + 0.375·28-s − 0.0641·29-s + 1.82·31-s − 0.244·32-s − 0.0533·34-s + 0.262·35-s − 0.809·37-s − 0.111·38-s − 0.113·40-s − 1.85·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(693\)    =    \(3^{2} \cdot 7 \cdot 11\)
Sign: $-1$
Analytic conductor: \(40.8883\)
Root analytic conductor: \(6.39439\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 693,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 + 7T \)
11 \( 1 + 11T \)
good2 \( 1 + 0.232T + 8T^{2} \)
5 \( 1 + 7.75T + 125T^{2} \)
13 \( 1 - 59.4T + 2.19e3T^{2} \)
17 \( 1 - 45.4T + 4.91e3T^{2} \)
19 \( 1 - 111.T + 6.85e3T^{2} \)
23 \( 1 + 105.T + 1.21e4T^{2} \)
29 \( 1 + 10.0T + 2.43e4T^{2} \)
31 \( 1 - 315.T + 2.97e4T^{2} \)
37 \( 1 + 182.T + 5.06e4T^{2} \)
41 \( 1 + 487.T + 6.89e4T^{2} \)
43 \( 1 + 358.T + 7.95e4T^{2} \)
47 \( 1 + 205.T + 1.03e5T^{2} \)
53 \( 1 + 134.T + 1.48e5T^{2} \)
59 \( 1 - 891.T + 2.05e5T^{2} \)
61 \( 1 - 654.T + 2.26e5T^{2} \)
67 \( 1 + 102.T + 3.00e5T^{2} \)
71 \( 1 + 119.T + 3.57e5T^{2} \)
73 \( 1 + 346.T + 3.89e5T^{2} \)
79 \( 1 + 774.T + 4.93e5T^{2} \)
83 \( 1 + 1.04e3T + 5.71e5T^{2} \)
89 \( 1 + 502.T + 7.04e5T^{2} \)
97 \( 1 + 939.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.929762048472005608922200479549, −8.416569075101449374280467584325, −8.301127173889242612819321348991, −7.10805718346756694460687423744, −5.91543818001065545160439451410, −5.03224414784603519334094480084, −3.87313705832006731656763319464, −3.26307181189100111763425618873, −1.24274805081644487000624017387, 0, 1.24274805081644487000624017387, 3.26307181189100111763425618873, 3.87313705832006731656763319464, 5.03224414784603519334094480084, 5.91543818001065545160439451410, 7.10805718346756694460687423744, 8.301127173889242612819321348991, 8.416569075101449374280467584325, 9.929762048472005608922200479549

Graph of the $Z$-function along the critical line