Properties

Label 2-693-1.1-c3-0-42
Degree $2$
Conductor $693$
Sign $-1$
Analytic cond. $40.8883$
Root an. cond. $6.39439$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5.36·2-s + 20.7·4-s + 1.66·5-s − 7·7-s − 68.4·8-s − 8.94·10-s − 11·11-s + 0.996·13-s + 37.5·14-s + 200.·16-s + 99.5·17-s + 32.8·19-s + 34.6·20-s + 58.9·22-s − 72.6·23-s − 122.·25-s − 5.34·26-s − 145.·28-s − 45.0·29-s − 62.8·31-s − 529.·32-s − 533.·34-s − 11.6·35-s − 301.·37-s − 176.·38-s − 114.·40-s + 307.·41-s + ⋯
L(s)  = 1  − 1.89·2-s + 2.59·4-s + 0.149·5-s − 0.377·7-s − 3.02·8-s − 0.282·10-s − 0.301·11-s + 0.0212·13-s + 0.716·14-s + 3.13·16-s + 1.41·17-s + 0.396·19-s + 0.387·20-s + 0.571·22-s − 0.658·23-s − 0.977·25-s − 0.0403·26-s − 0.980·28-s − 0.288·29-s − 0.363·31-s − 2.92·32-s − 2.69·34-s − 0.0564·35-s − 1.33·37-s − 0.752·38-s − 0.451·40-s + 1.17·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(693\)    =    \(3^{2} \cdot 7 \cdot 11\)
Sign: $-1$
Analytic conductor: \(40.8883\)
Root analytic conductor: \(6.39439\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 693,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 + 7T \)
11 \( 1 + 11T \)
good2 \( 1 + 5.36T + 8T^{2} \)
5 \( 1 - 1.66T + 125T^{2} \)
13 \( 1 - 0.996T + 2.19e3T^{2} \)
17 \( 1 - 99.5T + 4.91e3T^{2} \)
19 \( 1 - 32.8T + 6.85e3T^{2} \)
23 \( 1 + 72.6T + 1.21e4T^{2} \)
29 \( 1 + 45.0T + 2.43e4T^{2} \)
31 \( 1 + 62.8T + 2.97e4T^{2} \)
37 \( 1 + 301.T + 5.06e4T^{2} \)
41 \( 1 - 307.T + 6.89e4T^{2} \)
43 \( 1 - 214.T + 7.95e4T^{2} \)
47 \( 1 - 602.T + 1.03e5T^{2} \)
53 \( 1 + 592.T + 1.48e5T^{2} \)
59 \( 1 + 695.T + 2.05e5T^{2} \)
61 \( 1 - 442.T + 2.26e5T^{2} \)
67 \( 1 + 555.T + 3.00e5T^{2} \)
71 \( 1 - 153.T + 3.57e5T^{2} \)
73 \( 1 + 147.T + 3.89e5T^{2} \)
79 \( 1 - 676.T + 4.93e5T^{2} \)
83 \( 1 - 222.T + 5.71e5T^{2} \)
89 \( 1 - 1.13e3T + 7.04e5T^{2} \)
97 \( 1 - 1.01e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.548924076862037214516285576207, −8.983872051563959548037896704647, −7.77133634996702908922959108597, −7.55907751947258218193185389336, −6.31350680118817512899238979074, −5.56380282597534844236109311538, −3.55644139608032578899851950203, −2.40070490076710911561856235022, −1.24082907130985927531488781561, 0, 1.24082907130985927531488781561, 2.40070490076710911561856235022, 3.55644139608032578899851950203, 5.56380282597534844236109311538, 6.31350680118817512899238979074, 7.55907751947258218193185389336, 7.77133634996702908922959108597, 8.983872051563959548037896704647, 9.548924076862037214516285576207

Graph of the $Z$-function along the critical line