Properties

Label 2-693-1.1-c3-0-40
Degree $2$
Conductor $693$
Sign $-1$
Analytic cond. $40.8883$
Root an. cond. $6.39439$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.221·2-s − 7.95·4-s − 15.1·5-s + 7·7-s + 3.53·8-s + 3.36·10-s − 11·11-s + 37.8·13-s − 1.55·14-s + 62.8·16-s + 61.7·17-s + 54.5·19-s + 120.·20-s + 2.44·22-s − 24.4·23-s + 104.·25-s − 8.38·26-s − 55.6·28-s + 16.2·29-s − 190.·31-s − 42.2·32-s − 13.7·34-s − 106.·35-s + 170.·37-s − 12.1·38-s − 53.6·40-s − 78.0·41-s + ⋯
L(s)  = 1  − 0.0784·2-s − 0.993·4-s − 1.35·5-s + 0.377·7-s + 0.156·8-s + 0.106·10-s − 0.301·11-s + 0.806·13-s − 0.0296·14-s + 0.981·16-s + 0.881·17-s + 0.658·19-s + 1.34·20-s + 0.0236·22-s − 0.222·23-s + 0.838·25-s − 0.0632·26-s − 0.375·28-s + 0.104·29-s − 1.10·31-s − 0.233·32-s − 0.0691·34-s − 0.512·35-s + 0.758·37-s − 0.0516·38-s − 0.212·40-s − 0.297·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(693\)    =    \(3^{2} \cdot 7 \cdot 11\)
Sign: $-1$
Analytic conductor: \(40.8883\)
Root analytic conductor: \(6.39439\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 693,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 - 7T \)
11 \( 1 + 11T \)
good2 \( 1 + 0.221T + 8T^{2} \)
5 \( 1 + 15.1T + 125T^{2} \)
13 \( 1 - 37.8T + 2.19e3T^{2} \)
17 \( 1 - 61.7T + 4.91e3T^{2} \)
19 \( 1 - 54.5T + 6.85e3T^{2} \)
23 \( 1 + 24.4T + 1.21e4T^{2} \)
29 \( 1 - 16.2T + 2.43e4T^{2} \)
31 \( 1 + 190.T + 2.97e4T^{2} \)
37 \( 1 - 170.T + 5.06e4T^{2} \)
41 \( 1 + 78.0T + 6.89e4T^{2} \)
43 \( 1 - 45.5T + 7.95e4T^{2} \)
47 \( 1 + 273.T + 1.03e5T^{2} \)
53 \( 1 - 163.T + 1.48e5T^{2} \)
59 \( 1 + 650.T + 2.05e5T^{2} \)
61 \( 1 - 257.T + 2.26e5T^{2} \)
67 \( 1 + 399.T + 3.00e5T^{2} \)
71 \( 1 + 198.T + 3.57e5T^{2} \)
73 \( 1 + 226.T + 3.89e5T^{2} \)
79 \( 1 - 138.T + 4.93e5T^{2} \)
83 \( 1 + 490.T + 5.71e5T^{2} \)
89 \( 1 + 221.T + 7.04e5T^{2} \)
97 \( 1 - 1.59e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.541503303718091858844022581433, −8.621373122572717417447165366548, −7.949288001457336765291419684749, −7.38359355245444053310585557251, −5.86207681602135082004995696436, −4.90853663868747665439950088080, −3.98686009375422435268885149842, −3.26317164093103664574894566988, −1.20295292431872029950449250423, 0, 1.20295292431872029950449250423, 3.26317164093103664574894566988, 3.98686009375422435268885149842, 4.90853663868747665439950088080, 5.86207681602135082004995696436, 7.38359355245444053310585557251, 7.949288001457336765291419684749, 8.621373122572717417447165366548, 9.541503303718091858844022581433

Graph of the $Z$-function along the critical line