Properties

Label 2-693-1.1-c3-0-38
Degree $2$
Conductor $693$
Sign $1$
Analytic cond. $40.8883$
Root an. cond. $6.39439$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.24·2-s + 2.53·4-s + 16.0·5-s − 7·7-s − 17.7·8-s + 52.2·10-s + 11·11-s + 35.3·13-s − 22.7·14-s − 77.8·16-s − 40.4·17-s + 118.·19-s + 40.7·20-s + 35.7·22-s + 174.·23-s + 134.·25-s + 114.·26-s − 17.7·28-s + 262.·29-s − 36.1·31-s − 110.·32-s − 131.·34-s − 112.·35-s + 19.0·37-s + 383.·38-s − 285.·40-s − 156.·41-s + ⋯
L(s)  = 1  + 1.14·2-s + 0.316·4-s + 1.43·5-s − 0.377·7-s − 0.784·8-s + 1.65·10-s + 0.301·11-s + 0.754·13-s − 0.433·14-s − 1.21·16-s − 0.577·17-s + 1.42·19-s + 0.455·20-s + 0.345·22-s + 1.58·23-s + 1.07·25-s + 0.865·26-s − 0.119·28-s + 1.68·29-s − 0.209·31-s − 0.611·32-s − 0.662·34-s − 0.544·35-s + 0.0846·37-s + 1.63·38-s − 1.12·40-s − 0.598·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(693\)    =    \(3^{2} \cdot 7 \cdot 11\)
Sign: $1$
Analytic conductor: \(40.8883\)
Root analytic conductor: \(6.39439\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 693,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(4.562993668\)
\(L(\frac12)\) \(\approx\) \(4.562993668\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 + 7T \)
11 \( 1 - 11T \)
good2 \( 1 - 3.24T + 8T^{2} \)
5 \( 1 - 16.0T + 125T^{2} \)
13 \( 1 - 35.3T + 2.19e3T^{2} \)
17 \( 1 + 40.4T + 4.91e3T^{2} \)
19 \( 1 - 118.T + 6.85e3T^{2} \)
23 \( 1 - 174.T + 1.21e4T^{2} \)
29 \( 1 - 262.T + 2.43e4T^{2} \)
31 \( 1 + 36.1T + 2.97e4T^{2} \)
37 \( 1 - 19.0T + 5.06e4T^{2} \)
41 \( 1 + 156.T + 6.89e4T^{2} \)
43 \( 1 - 287.T + 7.95e4T^{2} \)
47 \( 1 + 397.T + 1.03e5T^{2} \)
53 \( 1 + 272.T + 1.48e5T^{2} \)
59 \( 1 - 507.T + 2.05e5T^{2} \)
61 \( 1 - 35.5T + 2.26e5T^{2} \)
67 \( 1 - 979.T + 3.00e5T^{2} \)
71 \( 1 + 750.T + 3.57e5T^{2} \)
73 \( 1 - 395.T + 3.89e5T^{2} \)
79 \( 1 + 736.T + 4.93e5T^{2} \)
83 \( 1 + 582.T + 5.71e5T^{2} \)
89 \( 1 - 806.T + 7.04e5T^{2} \)
97 \( 1 + 957.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.962223437802360562386329578037, −9.302529152621927091710348133463, −8.583271605804741534753721163594, −6.91086204534138667877711843395, −6.29312111275353564691331320819, −5.46916070647206661107948309512, −4.75082792786151851827272127204, −3.44565223634946139946960747399, −2.60661458855278224653023630310, −1.12830636890115657044299363123, 1.12830636890115657044299363123, 2.60661458855278224653023630310, 3.44565223634946139946960747399, 4.75082792786151851827272127204, 5.46916070647206661107948309512, 6.29312111275353564691331320819, 6.91086204534138667877711843395, 8.583271605804741534753721163594, 9.302529152621927091710348133463, 9.962223437802360562386329578037

Graph of the $Z$-function along the critical line