Properties

Label 2-693-1.1-c3-0-24
Degree $2$
Conductor $693$
Sign $1$
Analytic cond. $40.8883$
Root an. cond. $6.39439$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.183·2-s − 7.96·4-s + 17.9·5-s − 7·7-s + 2.92·8-s − 3.28·10-s + 11·11-s − 53.2·13-s + 1.28·14-s + 63.1·16-s + 86.7·17-s + 55.6·19-s − 142.·20-s − 2.01·22-s − 185.·23-s + 196.·25-s + 9.75·26-s + 55.7·28-s + 145.·29-s + 132.·31-s − 35.0·32-s − 15.9·34-s − 125.·35-s − 129.·37-s − 10.2·38-s + 52.4·40-s − 139.·41-s + ⋯
L(s)  = 1  − 0.0648·2-s − 0.995·4-s + 1.60·5-s − 0.377·7-s + 0.129·8-s − 0.103·10-s + 0.301·11-s − 1.13·13-s + 0.0245·14-s + 0.987·16-s + 1.23·17-s + 0.672·19-s − 1.59·20-s − 0.0195·22-s − 1.67·23-s + 1.57·25-s + 0.0736·26-s + 0.376·28-s + 0.934·29-s + 0.768·31-s − 0.193·32-s − 0.0802·34-s − 0.606·35-s − 0.574·37-s − 0.0435·38-s + 0.207·40-s − 0.532·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(693\)    =    \(3^{2} \cdot 7 \cdot 11\)
Sign: $1$
Analytic conductor: \(40.8883\)
Root analytic conductor: \(6.39439\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 693,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.966097713\)
\(L(\frac12)\) \(\approx\) \(1.966097713\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 + 7T \)
11 \( 1 - 11T \)
good2 \( 1 + 0.183T + 8T^{2} \)
5 \( 1 - 17.9T + 125T^{2} \)
13 \( 1 + 53.2T + 2.19e3T^{2} \)
17 \( 1 - 86.7T + 4.91e3T^{2} \)
19 \( 1 - 55.6T + 6.85e3T^{2} \)
23 \( 1 + 185.T + 1.21e4T^{2} \)
29 \( 1 - 145.T + 2.43e4T^{2} \)
31 \( 1 - 132.T + 2.97e4T^{2} \)
37 \( 1 + 129.T + 5.06e4T^{2} \)
41 \( 1 + 139.T + 6.89e4T^{2} \)
43 \( 1 + 87.1T + 7.95e4T^{2} \)
47 \( 1 - 576.T + 1.03e5T^{2} \)
53 \( 1 - 92.0T + 1.48e5T^{2} \)
59 \( 1 + 315.T + 2.05e5T^{2} \)
61 \( 1 + 146.T + 2.26e5T^{2} \)
67 \( 1 - 734.T + 3.00e5T^{2} \)
71 \( 1 - 702.T + 3.57e5T^{2} \)
73 \( 1 + 361.T + 3.89e5T^{2} \)
79 \( 1 - 1.16e3T + 4.93e5T^{2} \)
83 \( 1 - 1.30e3T + 5.71e5T^{2} \)
89 \( 1 + 1.38e3T + 7.04e5T^{2} \)
97 \( 1 - 212.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.894647240996706169396942381018, −9.522439691522870505063731410454, −8.519780591081875397332684768419, −7.50586551991173587176439995998, −6.28265185878199681384401012433, −5.54511974197424530591092054552, −4.76699656143625685901496365558, −3.42680860901895258361254926813, −2.16833422925059465524448182676, −0.843632661861296422724326384891, 0.843632661861296422724326384891, 2.16833422925059465524448182676, 3.42680860901895258361254926813, 4.76699656143625685901496365558, 5.54511974197424530591092054552, 6.28265185878199681384401012433, 7.50586551991173587176439995998, 8.519780591081875397332684768419, 9.522439691522870505063731410454, 9.894647240996706169396942381018

Graph of the $Z$-function along the critical line