Properties

Label 2-693-1.1-c3-0-2
Degree $2$
Conductor $693$
Sign $1$
Analytic cond. $40.8883$
Root an. cond. $6.39439$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.53·2-s − 5.65·4-s − 8.69·5-s − 7·7-s + 20.9·8-s + 13.3·10-s + 11·11-s − 76.3·13-s + 10.7·14-s + 13.1·16-s − 39.7·17-s − 27.9·19-s + 49.1·20-s − 16.8·22-s − 87.2·23-s − 49.3·25-s + 117.·26-s + 39.5·28-s + 38.3·29-s − 186.·31-s − 187.·32-s + 60.8·34-s + 60.8·35-s − 218.·37-s + 42.8·38-s − 182.·40-s − 80.1·41-s + ⋯
L(s)  = 1  − 0.541·2-s − 0.706·4-s − 0.778·5-s − 0.377·7-s + 0.924·8-s + 0.421·10-s + 0.301·11-s − 1.62·13-s + 0.204·14-s + 0.205·16-s − 0.566·17-s − 0.337·19-s + 0.549·20-s − 0.163·22-s − 0.790·23-s − 0.394·25-s + 0.882·26-s + 0.267·28-s + 0.245·29-s − 1.07·31-s − 1.03·32-s + 0.307·34-s + 0.294·35-s − 0.972·37-s + 0.183·38-s − 0.719·40-s − 0.305·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(693\)    =    \(3^{2} \cdot 7 \cdot 11\)
Sign: $1$
Analytic conductor: \(40.8883\)
Root analytic conductor: \(6.39439\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 693,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.3527487740\)
\(L(\frac12)\) \(\approx\) \(0.3527487740\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 + 7T \)
11 \( 1 - 11T \)
good2 \( 1 + 1.53T + 8T^{2} \)
5 \( 1 + 8.69T + 125T^{2} \)
13 \( 1 + 76.3T + 2.19e3T^{2} \)
17 \( 1 + 39.7T + 4.91e3T^{2} \)
19 \( 1 + 27.9T + 6.85e3T^{2} \)
23 \( 1 + 87.2T + 1.21e4T^{2} \)
29 \( 1 - 38.3T + 2.43e4T^{2} \)
31 \( 1 + 186.T + 2.97e4T^{2} \)
37 \( 1 + 218.T + 5.06e4T^{2} \)
41 \( 1 + 80.1T + 6.89e4T^{2} \)
43 \( 1 + 35.1T + 7.95e4T^{2} \)
47 \( 1 - 282.T + 1.03e5T^{2} \)
53 \( 1 + 145.T + 1.48e5T^{2} \)
59 \( 1 + 91.0T + 2.05e5T^{2} \)
61 \( 1 - 808.T + 2.26e5T^{2} \)
67 \( 1 - 794.T + 3.00e5T^{2} \)
71 \( 1 + 946.T + 3.57e5T^{2} \)
73 \( 1 - 801.T + 3.89e5T^{2} \)
79 \( 1 + 890.T + 4.93e5T^{2} \)
83 \( 1 - 559.T + 5.71e5T^{2} \)
89 \( 1 - 1.52e3T + 7.04e5T^{2} \)
97 \( 1 - 664.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.913391569045315700428913678766, −9.243535522594333647318723097076, −8.376401220941887360481463832105, −7.58070792967589942241003918007, −6.83662884061121346242228080073, −5.41341969349810076460555909626, −4.44790086661074123933127047207, −3.64629289644576259721691776350, −2.09215771946091788090118919731, −0.35922587688180396532302366460, 0.35922587688180396532302366460, 2.09215771946091788090118919731, 3.64629289644576259721691776350, 4.44790086661074123933127047207, 5.41341969349810076460555909626, 6.83662884061121346242228080073, 7.58070792967589942241003918007, 8.376401220941887360481463832105, 9.243535522594333647318723097076, 9.913391569045315700428913678766

Graph of the $Z$-function along the critical line