L(s) = 1 | − 0.561·2-s − 7.68·4-s + 3.31·5-s + 7·7-s + 8.80·8-s − 1.86·10-s − 11·11-s − 41.9·13-s − 3.93·14-s + 56.5·16-s + 68.8·17-s − 114.·19-s − 25.4·20-s + 6.17·22-s + 124.·23-s − 114.·25-s + 23.5·26-s − 53.7·28-s + 147.·29-s − 55.9·31-s − 102.·32-s − 38.6·34-s + 23.2·35-s + 162.·37-s + 64.2·38-s + 29.2·40-s − 258.·41-s + ⋯ |
L(s) = 1 | − 0.198·2-s − 0.960·4-s + 0.296·5-s + 0.377·7-s + 0.389·8-s − 0.0588·10-s − 0.301·11-s − 0.894·13-s − 0.0750·14-s + 0.883·16-s + 0.982·17-s − 1.38·19-s − 0.284·20-s + 0.0598·22-s + 1.13·23-s − 0.912·25-s + 0.177·26-s − 0.363·28-s + 0.945·29-s − 0.324·31-s − 0.564·32-s − 0.195·34-s + 0.112·35-s + 0.724·37-s + 0.274·38-s + 0.115·40-s − 0.985·41-s + ⋯ |
Λ(s)=(=(693s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(693s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
1.305598327 |
L(21) |
≈ |
1.305598327 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1−7T |
| 11 | 1+11T |
good | 2 | 1+0.561T+8T2 |
| 5 | 1−3.31T+125T2 |
| 13 | 1+41.9T+2.19e3T2 |
| 17 | 1−68.8T+4.91e3T2 |
| 19 | 1+114.T+6.85e3T2 |
| 23 | 1−124.T+1.21e4T2 |
| 29 | 1−147.T+2.43e4T2 |
| 31 | 1+55.9T+2.97e4T2 |
| 37 | 1−162.T+5.06e4T2 |
| 41 | 1+258.T+6.89e4T2 |
| 43 | 1+106.T+7.95e4T2 |
| 47 | 1+110.T+1.03e5T2 |
| 53 | 1+10.4T+1.48e5T2 |
| 59 | 1−182.T+2.05e5T2 |
| 61 | 1−189.T+2.26e5T2 |
| 67 | 1−580.T+3.00e5T2 |
| 71 | 1−1.16e3T+3.57e5T2 |
| 73 | 1+79.6T+3.89e5T2 |
| 79 | 1−1.09e3T+4.93e5T2 |
| 83 | 1−874.T+5.71e5T2 |
| 89 | 1−844.T+7.04e5T2 |
| 97 | 1−925.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.00193232648248253138585710998, −9.262291741723733578835309238229, −8.329262106372243706091523440451, −7.71149394828181567647543638257, −6.52097645129530690922416049163, −5.30800327038205900887971515050, −4.73033359160660884453408105521, −3.54747174217649852290930377969, −2.13387747067743997429406781782, −0.68492672600460339496107357010,
0.68492672600460339496107357010, 2.13387747067743997429406781782, 3.54747174217649852290930377969, 4.73033359160660884453408105521, 5.30800327038205900887971515050, 6.52097645129530690922416049163, 7.71149394828181567647543638257, 8.329262106372243706091523440451, 9.262291741723733578835309238229, 10.00193232648248253138585710998