Properties

Label 2-693-1.1-c3-0-16
Degree $2$
Conductor $693$
Sign $1$
Analytic cond. $40.8883$
Root an. cond. $6.39439$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.561·2-s − 7.68·4-s + 3.31·5-s + 7·7-s + 8.80·8-s − 1.86·10-s − 11·11-s − 41.9·13-s − 3.93·14-s + 56.5·16-s + 68.8·17-s − 114.·19-s − 25.4·20-s + 6.17·22-s + 124.·23-s − 114.·25-s + 23.5·26-s − 53.7·28-s + 147.·29-s − 55.9·31-s − 102.·32-s − 38.6·34-s + 23.2·35-s + 162.·37-s + 64.2·38-s + 29.2·40-s − 258.·41-s + ⋯
L(s)  = 1  − 0.198·2-s − 0.960·4-s + 0.296·5-s + 0.377·7-s + 0.389·8-s − 0.0588·10-s − 0.301·11-s − 0.894·13-s − 0.0750·14-s + 0.883·16-s + 0.982·17-s − 1.38·19-s − 0.284·20-s + 0.0598·22-s + 1.13·23-s − 0.912·25-s + 0.177·26-s − 0.363·28-s + 0.945·29-s − 0.324·31-s − 0.564·32-s − 0.195·34-s + 0.112·35-s + 0.724·37-s + 0.274·38-s + 0.115·40-s − 0.985·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(693\)    =    \(3^{2} \cdot 7 \cdot 11\)
Sign: $1$
Analytic conductor: \(40.8883\)
Root analytic conductor: \(6.39439\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 693,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.305598327\)
\(L(\frac12)\) \(\approx\) \(1.305598327\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 - 7T \)
11 \( 1 + 11T \)
good2 \( 1 + 0.561T + 8T^{2} \)
5 \( 1 - 3.31T + 125T^{2} \)
13 \( 1 + 41.9T + 2.19e3T^{2} \)
17 \( 1 - 68.8T + 4.91e3T^{2} \)
19 \( 1 + 114.T + 6.85e3T^{2} \)
23 \( 1 - 124.T + 1.21e4T^{2} \)
29 \( 1 - 147.T + 2.43e4T^{2} \)
31 \( 1 + 55.9T + 2.97e4T^{2} \)
37 \( 1 - 162.T + 5.06e4T^{2} \)
41 \( 1 + 258.T + 6.89e4T^{2} \)
43 \( 1 + 106.T + 7.95e4T^{2} \)
47 \( 1 + 110.T + 1.03e5T^{2} \)
53 \( 1 + 10.4T + 1.48e5T^{2} \)
59 \( 1 - 182.T + 2.05e5T^{2} \)
61 \( 1 - 189.T + 2.26e5T^{2} \)
67 \( 1 - 580.T + 3.00e5T^{2} \)
71 \( 1 - 1.16e3T + 3.57e5T^{2} \)
73 \( 1 + 79.6T + 3.89e5T^{2} \)
79 \( 1 - 1.09e3T + 4.93e5T^{2} \)
83 \( 1 - 874.T + 5.71e5T^{2} \)
89 \( 1 - 844.T + 7.04e5T^{2} \)
97 \( 1 - 925.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.00193232648248253138585710998, −9.262291741723733578835309238229, −8.329262106372243706091523440451, −7.71149394828181567647543638257, −6.52097645129530690922416049163, −5.30800327038205900887971515050, −4.73033359160660884453408105521, −3.54747174217649852290930377969, −2.13387747067743997429406781782, −0.68492672600460339496107357010, 0.68492672600460339496107357010, 2.13387747067743997429406781782, 3.54747174217649852290930377969, 4.73033359160660884453408105521, 5.30800327038205900887971515050, 6.52097645129530690922416049163, 7.71149394828181567647543638257, 8.329262106372243706091523440451, 9.262291741723733578835309238229, 10.00193232648248253138585710998

Graph of the $Z$-function along the critical line