Properties

Label 2-693-1.1-c3-0-0
Degree $2$
Conductor $693$
Sign $1$
Analytic cond. $40.8883$
Root an. cond. $6.39439$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.28·2-s − 6.36·4-s − 16.8·5-s + 7·7-s + 18.3·8-s + 21.6·10-s − 11·11-s − 68.0·13-s − 8.96·14-s + 27.3·16-s − 119.·17-s + 16.8·19-s + 107.·20-s + 14.0·22-s − 199.·23-s + 160.·25-s + 87.1·26-s − 44.5·28-s − 181.·29-s − 31.5·31-s − 182.·32-s + 152.·34-s − 118.·35-s + 75.9·37-s − 21.5·38-s − 310.·40-s − 408.·41-s + ⋯
L(s)  = 1  − 0.452·2-s − 0.795·4-s − 1.51·5-s + 0.377·7-s + 0.812·8-s + 0.683·10-s − 0.301·11-s − 1.45·13-s − 0.171·14-s + 0.427·16-s − 1.69·17-s + 0.203·19-s + 1.20·20-s + 0.136·22-s − 1.81·23-s + 1.28·25-s + 0.657·26-s − 0.300·28-s − 1.15·29-s − 0.182·31-s − 1.00·32-s + 0.768·34-s − 0.570·35-s + 0.337·37-s − 0.0920·38-s − 1.22·40-s − 1.55·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(693\)    =    \(3^{2} \cdot 7 \cdot 11\)
Sign: $1$
Analytic conductor: \(40.8883\)
Root analytic conductor: \(6.39439\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 693,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.1542527293\)
\(L(\frac12)\) \(\approx\) \(0.1542527293\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 - 7T \)
11 \( 1 + 11T \)
good2 \( 1 + 1.28T + 8T^{2} \)
5 \( 1 + 16.8T + 125T^{2} \)
13 \( 1 + 68.0T + 2.19e3T^{2} \)
17 \( 1 + 119.T + 4.91e3T^{2} \)
19 \( 1 - 16.8T + 6.85e3T^{2} \)
23 \( 1 + 199.T + 1.21e4T^{2} \)
29 \( 1 + 181.T + 2.43e4T^{2} \)
31 \( 1 + 31.5T + 2.97e4T^{2} \)
37 \( 1 - 75.9T + 5.06e4T^{2} \)
41 \( 1 + 408.T + 6.89e4T^{2} \)
43 \( 1 + 97.8T + 7.95e4T^{2} \)
47 \( 1 + 41.8T + 1.03e5T^{2} \)
53 \( 1 - 563.T + 1.48e5T^{2} \)
59 \( 1 - 224.T + 2.05e5T^{2} \)
61 \( 1 + 622.T + 2.26e5T^{2} \)
67 \( 1 + 280.T + 3.00e5T^{2} \)
71 \( 1 - 807.T + 3.57e5T^{2} \)
73 \( 1 - 1.03e3T + 3.89e5T^{2} \)
79 \( 1 - 710.T + 4.93e5T^{2} \)
83 \( 1 - 191.T + 5.71e5T^{2} \)
89 \( 1 + 1.56e3T + 7.04e5T^{2} \)
97 \( 1 - 816.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.991514417338405308009689847012, −9.112631660369069391587491690243, −8.200915202396081111538123425956, −7.74693263999960597908787248873, −6.89538536396294361612638216849, −5.25023589704711290283776898161, −4.44548886330974979044271168391, −3.75865893652698915563944941657, −2.11601982179219386698725466801, −0.23267697553066684775333215359, 0.23267697553066684775333215359, 2.11601982179219386698725466801, 3.75865893652698915563944941657, 4.44548886330974979044271168391, 5.25023589704711290283776898161, 6.89538536396294361612638216849, 7.74693263999960597908787248873, 8.200915202396081111538123425956, 9.112631660369069391587491690243, 9.991514417338405308009689847012

Graph of the $Z$-function along the critical line