Properties

Label 2-693-1.1-c1-0-17
Degree $2$
Conductor $693$
Sign $-1$
Analytic cond. $5.53363$
Root an. cond. $2.35236$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.47·2-s + 4.11·4-s + 2.58·5-s − 7-s − 5.22·8-s − 6.39·10-s + 11-s − 5.87·13-s + 2.47·14-s + 4.70·16-s − 7.51·17-s − 2.35·19-s + 10.6·20-s − 2.47·22-s − 6.94·23-s + 1.69·25-s + 14.5·26-s − 4.11·28-s + 5.87·29-s − 3.66·31-s − 1.16·32-s + 18.5·34-s − 2.58·35-s + 3.30·37-s + 5.83·38-s − 13.5·40-s − 5.28·41-s + ⋯
L(s)  = 1  − 1.74·2-s + 2.05·4-s + 1.15·5-s − 0.377·7-s − 1.84·8-s − 2.02·10-s + 0.301·11-s − 1.62·13-s + 0.660·14-s + 1.17·16-s − 1.82·17-s − 0.540·19-s + 2.38·20-s − 0.527·22-s − 1.44·23-s + 0.339·25-s + 2.84·26-s − 0.777·28-s + 1.09·29-s − 0.657·31-s − 0.206·32-s + 3.18·34-s − 0.437·35-s + 0.543·37-s + 0.945·38-s − 2.13·40-s − 0.825·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(693\)    =    \(3^{2} \cdot 7 \cdot 11\)
Sign: $-1$
Analytic conductor: \(5.53363\)
Root analytic conductor: \(2.35236\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 693,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 + T \)
11 \( 1 - T \)
good2 \( 1 + 2.47T + 2T^{2} \)
5 \( 1 - 2.58T + 5T^{2} \)
13 \( 1 + 5.87T + 13T^{2} \)
17 \( 1 + 7.51T + 17T^{2} \)
19 \( 1 + 2.35T + 19T^{2} \)
23 \( 1 + 6.94T + 23T^{2} \)
29 \( 1 - 5.87T + 29T^{2} \)
31 \( 1 + 3.66T + 31T^{2} \)
37 \( 1 - 3.30T + 37T^{2} \)
41 \( 1 + 5.28T + 41T^{2} \)
43 \( 1 - 7.40T + 43T^{2} \)
47 \( 1 + 7.53T + 47T^{2} \)
53 \( 1 - 4.22T + 53T^{2} \)
59 \( 1 - 0.926T + 59T^{2} \)
61 \( 1 + 2T + 61T^{2} \)
67 \( 1 + 10.1T + 67T^{2} \)
71 \( 1 + 4.45T + 71T^{2} \)
73 \( 1 + 2.12T + 73T^{2} \)
79 \( 1 + 4.45T + 79T^{2} \)
83 \( 1 - 10.6T + 83T^{2} \)
89 \( 1 + 15.8T + 89T^{2} \)
97 \( 1 - 10.1T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.960107807087348120975795329477, −9.250753148388984556092838574682, −8.610533503782056568724918333153, −7.52134834263108139901158957655, −6.67504972162371151591638790190, −6.03676835054156400186328809877, −4.55212610203629738141904396619, −2.52690372605223738358154073362, −1.90906479945174843608366595062, 0, 1.90906479945174843608366595062, 2.52690372605223738358154073362, 4.55212610203629738141904396619, 6.03676835054156400186328809877, 6.67504972162371151591638790190, 7.52134834263108139901158957655, 8.610533503782056568724918333153, 9.250753148388984556092838574682, 9.960107807087348120975795329477

Graph of the $Z$-function along the critical line