Properties

Label 2-693-1.1-c1-0-15
Degree $2$
Conductor $693$
Sign $1$
Analytic cond. $5.53363$
Root an. cond. $2.35236$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.79·2-s + 5.79·4-s − 3·5-s + 7-s + 10.5·8-s − 8.37·10-s + 11-s + 13-s + 2.79·14-s + 17.9·16-s + 1.58·17-s + 2.58·19-s − 17.3·20-s + 2.79·22-s − 3.58·23-s + 4·25-s + 2.79·26-s + 5.79·28-s − 10.1·29-s − 5.58·31-s + 28.9·32-s + 4.41·34-s − 3·35-s + 37-s + 7.20·38-s − 31.7·40-s − 7.16·41-s + ⋯
L(s)  = 1  + 1.97·2-s + 2.89·4-s − 1.34·5-s + 0.377·7-s + 3.74·8-s − 2.64·10-s + 0.301·11-s + 0.277·13-s + 0.746·14-s + 4.48·16-s + 0.383·17-s + 0.592·19-s − 3.88·20-s + 0.595·22-s − 0.747·23-s + 0.800·25-s + 0.547·26-s + 1.09·28-s − 1.88·29-s − 1.00·31-s + 5.11·32-s + 0.757·34-s − 0.507·35-s + 0.164·37-s + 1.16·38-s − 5.01·40-s − 1.11·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(693\)    =    \(3^{2} \cdot 7 \cdot 11\)
Sign: $1$
Analytic conductor: \(5.53363\)
Root analytic conductor: \(2.35236\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 693,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.426293635\)
\(L(\frac12)\) \(\approx\) \(4.426293635\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 - T \)
11 \( 1 - T \)
good2 \( 1 - 2.79T + 2T^{2} \)
5 \( 1 + 3T + 5T^{2} \)
13 \( 1 - T + 13T^{2} \)
17 \( 1 - 1.58T + 17T^{2} \)
19 \( 1 - 2.58T + 19T^{2} \)
23 \( 1 + 3.58T + 23T^{2} \)
29 \( 1 + 10.1T + 29T^{2} \)
31 \( 1 + 5.58T + 31T^{2} \)
37 \( 1 - T + 37T^{2} \)
41 \( 1 + 7.16T + 41T^{2} \)
43 \( 1 + 7.58T + 43T^{2} \)
47 \( 1 + 10.5T + 47T^{2} \)
53 \( 1 - 0.417T + 53T^{2} \)
59 \( 1 - 4.58T + 59T^{2} \)
61 \( 1 - 10T + 61T^{2} \)
67 \( 1 + 0.582T + 67T^{2} \)
71 \( 1 - 7.16T + 71T^{2} \)
73 \( 1 - 7T + 73T^{2} \)
79 \( 1 + 11.1T + 79T^{2} \)
83 \( 1 - 2.41T + 83T^{2} \)
89 \( 1 - 9.16T + 89T^{2} \)
97 \( 1 + 11.5T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.20363639310005632484633214780, −9.966496820274017928775391258543, −8.251434300043529018213532833211, −7.53518203195715746265288408686, −6.81147182438356980663234845793, −5.67153197742313612986465513592, −4.88364377100089667363934438738, −3.79894712507237977365226115983, −3.45514576744159127624363870826, −1.82898168095775629493084590715, 1.82898168095775629493084590715, 3.45514576744159127624363870826, 3.79894712507237977365226115983, 4.88364377100089667363934438738, 5.67153197742313612986465513592, 6.81147182438356980663234845793, 7.53518203195715746265288408686, 8.251434300043529018213532833211, 9.966496820274017928775391258543, 11.20363639310005632484633214780

Graph of the $Z$-function along the critical line