Properties

Label 2-693-1.1-c1-0-13
Degree $2$
Conductor $693$
Sign $1$
Analytic cond. $5.53363$
Root an. cond. $2.35236$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.30·2-s + 3.30·4-s + 5-s − 7-s + 3.00·8-s + 2.30·10-s + 11-s + 3.60·13-s − 2.30·14-s + 0.302·16-s + 4·17-s + 3·19-s + 3.30·20-s + 2.30·22-s + 2·23-s − 4·25-s + 8.30·26-s − 3.30·28-s − 5.60·29-s − 2·31-s − 5.30·32-s + 9.21·34-s − 35-s − 8.21·37-s + 6.90·38-s + 3.00·40-s − 7.21·41-s + ⋯
L(s)  = 1  + 1.62·2-s + 1.65·4-s + 0.447·5-s − 0.377·7-s + 1.06·8-s + 0.728·10-s + 0.301·11-s + 1.00·13-s − 0.615·14-s + 0.0756·16-s + 0.970·17-s + 0.688·19-s + 0.738·20-s + 0.490·22-s + 0.417·23-s − 0.800·25-s + 1.62·26-s − 0.624·28-s − 1.04·29-s − 0.359·31-s − 0.937·32-s + 1.57·34-s − 0.169·35-s − 1.34·37-s + 1.12·38-s + 0.474·40-s − 1.12·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(693\)    =    \(3^{2} \cdot 7 \cdot 11\)
Sign: $1$
Analytic conductor: \(5.53363\)
Root analytic conductor: \(2.35236\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 693,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.903749989\)
\(L(\frac12)\) \(\approx\) \(3.903749989\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 + T \)
11 \( 1 - T \)
good2 \( 1 - 2.30T + 2T^{2} \)
5 \( 1 - T + 5T^{2} \)
13 \( 1 - 3.60T + 13T^{2} \)
17 \( 1 - 4T + 17T^{2} \)
19 \( 1 - 3T + 19T^{2} \)
23 \( 1 - 2T + 23T^{2} \)
29 \( 1 + 5.60T + 29T^{2} \)
31 \( 1 + 2T + 31T^{2} \)
37 \( 1 + 8.21T + 37T^{2} \)
41 \( 1 + 7.21T + 41T^{2} \)
43 \( 1 + 5.21T + 43T^{2} \)
47 \( 1 - 2.39T + 47T^{2} \)
53 \( 1 + 53T^{2} \)
59 \( 1 - 7.60T + 59T^{2} \)
61 \( 1 + 11.2T + 61T^{2} \)
67 \( 1 - 1.60T + 67T^{2} \)
71 \( 1 - 11.2T + 71T^{2} \)
73 \( 1 + 12.8T + 73T^{2} \)
79 \( 1 + 3.21T + 79T^{2} \)
83 \( 1 - 12T + 83T^{2} \)
89 \( 1 - 6T + 89T^{2} \)
97 \( 1 - 1.21T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.70796566540872969329755229258, −9.735986155121920974463703062957, −8.789195515370035215501904505887, −7.47994158733684855720487267118, −6.55917500509980125677895294161, −5.75796334656372880573643349782, −5.13572645756635745181213101822, −3.78340489930993696855598114187, −3.24905057990207045718136250013, −1.75222576013048732290404434874, 1.75222576013048732290404434874, 3.24905057990207045718136250013, 3.78340489930993696855598114187, 5.13572645756635745181213101822, 5.75796334656372880573643349782, 6.55917500509980125677895294161, 7.47994158733684855720487267118, 8.789195515370035215501904505887, 9.735986155121920974463703062957, 10.70796566540872969329755229258

Graph of the $Z$-function along the critical line