L(s) = 1 | + 2.30·2-s + 3.30·4-s + 5-s − 7-s + 3.00·8-s + 2.30·10-s + 11-s + 3.60·13-s − 2.30·14-s + 0.302·16-s + 4·17-s + 3·19-s + 3.30·20-s + 2.30·22-s + 2·23-s − 4·25-s + 8.30·26-s − 3.30·28-s − 5.60·29-s − 2·31-s − 5.30·32-s + 9.21·34-s − 35-s − 8.21·37-s + 6.90·38-s + 3.00·40-s − 7.21·41-s + ⋯ |
L(s) = 1 | + 1.62·2-s + 1.65·4-s + 0.447·5-s − 0.377·7-s + 1.06·8-s + 0.728·10-s + 0.301·11-s + 1.00·13-s − 0.615·14-s + 0.0756·16-s + 0.970·17-s + 0.688·19-s + 0.738·20-s + 0.490·22-s + 0.417·23-s − 0.800·25-s + 1.62·26-s − 0.624·28-s − 1.04·29-s − 0.359·31-s − 0.937·32-s + 1.57·34-s − 0.169·35-s − 1.34·37-s + 1.12·38-s + 0.474·40-s − 1.12·41-s + ⋯ |
Λ(s)=(=(693s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(693s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
3.903749989 |
L(21) |
≈ |
3.903749989 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1+T |
| 11 | 1−T |
good | 2 | 1−2.30T+2T2 |
| 5 | 1−T+5T2 |
| 13 | 1−3.60T+13T2 |
| 17 | 1−4T+17T2 |
| 19 | 1−3T+19T2 |
| 23 | 1−2T+23T2 |
| 29 | 1+5.60T+29T2 |
| 31 | 1+2T+31T2 |
| 37 | 1+8.21T+37T2 |
| 41 | 1+7.21T+41T2 |
| 43 | 1+5.21T+43T2 |
| 47 | 1−2.39T+47T2 |
| 53 | 1+53T2 |
| 59 | 1−7.60T+59T2 |
| 61 | 1+11.2T+61T2 |
| 67 | 1−1.60T+67T2 |
| 71 | 1−11.2T+71T2 |
| 73 | 1+12.8T+73T2 |
| 79 | 1+3.21T+79T2 |
| 83 | 1−12T+83T2 |
| 89 | 1−6T+89T2 |
| 97 | 1−1.21T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.70796566540872969329755229258, −9.735986155121920974463703062957, −8.789195515370035215501904505887, −7.47994158733684855720487267118, −6.55917500509980125677895294161, −5.75796334656372880573643349782, −5.13572645756635745181213101822, −3.78340489930993696855598114187, −3.24905057990207045718136250013, −1.75222576013048732290404434874,
1.75222576013048732290404434874, 3.24905057990207045718136250013, 3.78340489930993696855598114187, 5.13572645756635745181213101822, 5.75796334656372880573643349782, 6.55917500509980125677895294161, 7.47994158733684855720487267118, 8.789195515370035215501904505887, 9.735986155121920974463703062957, 10.70796566540872969329755229258