Properties

Label 2-693-1.1-c1-0-12
Degree $2$
Conductor $693$
Sign $-1$
Analytic cond. $5.53363$
Root an. cond. $2.35236$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.61·2-s + 0.618·4-s − 5-s + 7-s + 2.23·8-s + 1.61·10-s − 11-s − 5.47·13-s − 1.61·14-s − 4.85·16-s − 0.763·17-s + 6.70·19-s − 0.618·20-s + 1.61·22-s + 7.70·23-s − 4·25-s + 8.85·26-s + 0.618·28-s − 5·29-s − 0.763·31-s + 3.38·32-s + 1.23·34-s − 35-s − 7·37-s − 10.8·38-s − 2.23·40-s − 6.47·41-s + ⋯
L(s)  = 1  − 1.14·2-s + 0.309·4-s − 0.447·5-s + 0.377·7-s + 0.790·8-s + 0.511·10-s − 0.301·11-s − 1.51·13-s − 0.432·14-s − 1.21·16-s − 0.185·17-s + 1.53·19-s − 0.138·20-s + 0.344·22-s + 1.60·23-s − 0.800·25-s + 1.73·26-s + 0.116·28-s − 0.928·29-s − 0.137·31-s + 0.597·32-s + 0.211·34-s − 0.169·35-s − 1.15·37-s − 1.76·38-s − 0.353·40-s − 1.01·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(693\)    =    \(3^{2} \cdot 7 \cdot 11\)
Sign: $-1$
Analytic conductor: \(5.53363\)
Root analytic conductor: \(2.35236\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 693,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 - T \)
11 \( 1 + T \)
good2 \( 1 + 1.61T + 2T^{2} \)
5 \( 1 + T + 5T^{2} \)
13 \( 1 + 5.47T + 13T^{2} \)
17 \( 1 + 0.763T + 17T^{2} \)
19 \( 1 - 6.70T + 19T^{2} \)
23 \( 1 - 7.70T + 23T^{2} \)
29 \( 1 + 5T + 29T^{2} \)
31 \( 1 + 0.763T + 31T^{2} \)
37 \( 1 + 7T + 37T^{2} \)
41 \( 1 + 6.47T + 41T^{2} \)
43 \( 1 + 7.70T + 43T^{2} \)
47 \( 1 - 4.23T + 47T^{2} \)
53 \( 1 + 10.1T + 53T^{2} \)
59 \( 1 + 11.1T + 59T^{2} \)
61 \( 1 - 2T + 61T^{2} \)
67 \( 1 + 14.2T + 67T^{2} \)
71 \( 1 + 6.47T + 71T^{2} \)
73 \( 1 - 13.4T + 73T^{2} \)
79 \( 1 + 5.52T + 79T^{2} \)
83 \( 1 + 11.2T + 83T^{2} \)
89 \( 1 + 4.47T + 89T^{2} \)
97 \( 1 + 3.70T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.814424875318201484504423045261, −9.274956371802362232284804134023, −8.325634047048986700067163117070, −7.45565973461179382911003240239, −7.12213219192332975706190507539, −5.32716379192239946664751496737, −4.64794773018248815477062693086, −3.15367387378703832061078611773, −1.64844489523905234411263309100, 0, 1.64844489523905234411263309100, 3.15367387378703832061078611773, 4.64794773018248815477062693086, 5.32716379192239946664751496737, 7.12213219192332975706190507539, 7.45565973461179382911003240239, 8.325634047048986700067163117070, 9.274956371802362232284804134023, 9.814424875318201484504423045261

Graph of the $Z$-function along the critical line