Properties

Label 2-693-1.1-c1-0-0
Degree $2$
Conductor $693$
Sign $1$
Analytic cond. $5.53363$
Root an. cond. $2.35236$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.79·2-s + 1.20·4-s − 3·5-s + 7-s + 1.41·8-s + 5.37·10-s + 11-s + 13-s − 1.79·14-s − 4.95·16-s − 7.58·17-s − 6.58·19-s − 3.62·20-s − 1.79·22-s + 5.58·23-s + 4·25-s − 1.79·26-s + 1.20·28-s + 8.16·29-s + 3.58·31-s + 6.04·32-s + 13.5·34-s − 3·35-s + 37-s + 11.7·38-s − 4.25·40-s + 11.1·41-s + ⋯
L(s)  = 1  − 1.26·2-s + 0.604·4-s − 1.34·5-s + 0.377·7-s + 0.501·8-s + 1.69·10-s + 0.301·11-s + 0.277·13-s − 0.478·14-s − 1.23·16-s − 1.83·17-s − 1.51·19-s − 0.810·20-s − 0.381·22-s + 1.16·23-s + 0.800·25-s − 0.351·26-s + 0.228·28-s + 1.51·29-s + 0.643·31-s + 1.06·32-s + 2.32·34-s − 0.507·35-s + 0.164·37-s + 1.91·38-s − 0.672·40-s + 1.74·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(693\)    =    \(3^{2} \cdot 7 \cdot 11\)
Sign: $1$
Analytic conductor: \(5.53363\)
Root analytic conductor: \(2.35236\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 693,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.5122955597\)
\(L(\frac12)\) \(\approx\) \(0.5122955597\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 - T \)
11 \( 1 - T \)
good2 \( 1 + 1.79T + 2T^{2} \)
5 \( 1 + 3T + 5T^{2} \)
13 \( 1 - T + 13T^{2} \)
17 \( 1 + 7.58T + 17T^{2} \)
19 \( 1 + 6.58T + 19T^{2} \)
23 \( 1 - 5.58T + 23T^{2} \)
29 \( 1 - 8.16T + 29T^{2} \)
31 \( 1 - 3.58T + 31T^{2} \)
37 \( 1 - T + 37T^{2} \)
41 \( 1 - 11.1T + 41T^{2} \)
43 \( 1 - 1.58T + 43T^{2} \)
47 \( 1 + 1.41T + 47T^{2} \)
53 \( 1 - 9.58T + 53T^{2} \)
59 \( 1 + 4.58T + 59T^{2} \)
61 \( 1 - 10T + 61T^{2} \)
67 \( 1 - 8.58T + 67T^{2} \)
71 \( 1 + 11.1T + 71T^{2} \)
73 \( 1 - 7T + 73T^{2} \)
79 \( 1 - 7.16T + 79T^{2} \)
83 \( 1 - 11.5T + 83T^{2} \)
89 \( 1 + 9.16T + 89T^{2} \)
97 \( 1 + 2.41T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.66913523976373548693074771689, −9.350105952498327959702765301853, −8.540067563817448895495835929655, −8.254905317298261597097947285807, −7.16575431738473006031599528774, −6.51170113575159198997059072050, −4.62752241095814088830050221313, −4.13592854823371659674728409848, −2.39181914087941912708702112316, −0.72687725945129004235660609447, 0.72687725945129004235660609447, 2.39181914087941912708702112316, 4.13592854823371659674728409848, 4.62752241095814088830050221313, 6.51170113575159198997059072050, 7.16575431738473006031599528774, 8.254905317298261597097947285807, 8.540067563817448895495835929655, 9.350105952498327959702765301853, 10.66913523976373548693074771689

Graph of the $Z$-function along the critical line