Properties

Label 2-6900-5.4-c1-0-8
Degree $2$
Conductor $6900$
Sign $0.447 - 0.894i$
Analytic cond. $55.0967$
Root an. cond. $7.42272$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  i·3-s − 4i·7-s − 9-s − 2i·13-s + 6i·17-s − 2·19-s − 4·21-s + i·23-s + i·27-s − 6·29-s − 4·31-s + 8i·37-s − 2·39-s + 6·41-s − 8i·43-s + ⋯
L(s)  = 1  − 0.577i·3-s − 1.51i·7-s − 0.333·9-s − 0.554i·13-s + 1.45i·17-s − 0.458·19-s − 0.872·21-s + 0.208i·23-s + 0.192i·27-s − 1.11·29-s − 0.718·31-s + 1.31i·37-s − 0.320·39-s + 0.937·41-s − 1.21i·43-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6900 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6900\)    =    \(2^{2} \cdot 3 \cdot 5^{2} \cdot 23\)
Sign: $0.447 - 0.894i$
Analytic conductor: \(55.0967\)
Root analytic conductor: \(7.42272\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{6900} (6349, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 6900,\ (\ :1/2),\ 0.447 - 0.894i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7550602305\)
\(L(\frac12)\) \(\approx\) \(0.7550602305\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + iT \)
5 \( 1 \)
23 \( 1 - iT \)
good7 \( 1 + 4iT - 7T^{2} \)
11 \( 1 + 11T^{2} \)
13 \( 1 + 2iT - 13T^{2} \)
17 \( 1 - 6iT - 17T^{2} \)
19 \( 1 + 2T + 19T^{2} \)
29 \( 1 + 6T + 29T^{2} \)
31 \( 1 + 4T + 31T^{2} \)
37 \( 1 - 8iT - 37T^{2} \)
41 \( 1 - 6T + 41T^{2} \)
43 \( 1 + 8iT - 43T^{2} \)
47 \( 1 - 12iT - 47T^{2} \)
53 \( 1 - 6iT - 53T^{2} \)
59 \( 1 - 6T + 59T^{2} \)
61 \( 1 + 10T + 61T^{2} \)
67 \( 1 - 8iT - 67T^{2} \)
71 \( 1 + 6T + 71T^{2} \)
73 \( 1 + 2iT - 73T^{2} \)
79 \( 1 - 10T + 79T^{2} \)
83 \( 1 - 12iT - 83T^{2} \)
89 \( 1 + 6T + 89T^{2} \)
97 \( 1 - 8iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.84325177004026748885720684217, −7.51099364120308993359537574774, −6.74370874392025267337939275358, −6.09077571627175807068386095491, −5.38202517201003626289371329611, −4.26983774652200597141317345311, −3.84621089162059485664098388963, −2.91972584270743481853768013241, −1.75652702117879535468281759557, −1.02316651823771868751128250463, 0.19586715114141976357915167741, 1.92236265836866100869575257903, 2.53416881449374513532073560176, 3.40207338858494753362436711250, 4.28975302144482525278030970395, 5.11172777273964489799533236863, 5.58304154348854151435419205529, 6.30772265812298919956730078128, 7.14572339449530757266997410522, 7.894618990271258838482362332938

Graph of the $Z$-function along the critical line