# Properties

 Label 2-6900-5.4-c1-0-47 Degree $2$ Conductor $6900$ Sign $0.447 + 0.894i$ Analytic cond. $55.0967$ Root an. cond. $7.42272$ Motivic weight $1$ Arithmetic yes Rational no Primitive yes Self-dual no Analytic rank $0$

# Related objects

## Dirichlet series

 L(s)  = 1 + i·3-s + 4i·7-s − 9-s + 2i·13-s − 6i·17-s − 2·19-s − 4·21-s − i·23-s − i·27-s − 6·29-s − 4·31-s − 8i·37-s − 2·39-s + 6·41-s + 8i·43-s + ⋯
 L(s)  = 1 + 0.577i·3-s + 1.51i·7-s − 0.333·9-s + 0.554i·13-s − 1.45i·17-s − 0.458·19-s − 0.872·21-s − 0.208i·23-s − 0.192i·27-s − 1.11·29-s − 0.718·31-s − 1.31i·37-s − 0.320·39-s + 0.937·41-s + 1.21i·43-s + ⋯

## Functional equation

\begin{aligned}\Lambda(s)=\mathstrut & 6900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(2-s) \end{aligned}
\begin{aligned}\Lambda(s)=\mathstrut & 6900 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}

## Invariants

 Degree: $$2$$ Conductor: $$6900$$    =    $$2^{2} \cdot 3 \cdot 5^{2} \cdot 23$$ Sign: $0.447 + 0.894i$ Analytic conductor: $$55.0967$$ Root analytic conductor: $$7.42272$$ Motivic weight: $$1$$ Rational: no Arithmetic: yes Character: $\chi_{6900} (6349, \cdot )$ Primitive: yes Self-dual: no Analytic rank: $$0$$ Selberg data: $$(2,\ 6900,\ (\ :1/2),\ 0.447 + 0.894i)$$

## Particular Values

 $$L(1)$$ $$\approx$$ $$0.7550602305$$ $$L(\frac12)$$ $$\approx$$ $$0.7550602305$$ $$L(\frac{3}{2})$$ not available $$L(1)$$ not available

## Euler product

$$L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}$$
$p$$F_p(T)$
bad2 $$1$$
3 $$1 - iT$$
5 $$1$$
23 $$1 + iT$$
good7 $$1 - 4iT - 7T^{2}$$
11 $$1 + 11T^{2}$$
13 $$1 - 2iT - 13T^{2}$$
17 $$1 + 6iT - 17T^{2}$$
19 $$1 + 2T + 19T^{2}$$
29 $$1 + 6T + 29T^{2}$$
31 $$1 + 4T + 31T^{2}$$
37 $$1 + 8iT - 37T^{2}$$
41 $$1 - 6T + 41T^{2}$$
43 $$1 - 8iT - 43T^{2}$$
47 $$1 + 12iT - 47T^{2}$$
53 $$1 + 6iT - 53T^{2}$$
59 $$1 - 6T + 59T^{2}$$
61 $$1 + 10T + 61T^{2}$$
67 $$1 + 8iT - 67T^{2}$$
71 $$1 + 6T + 71T^{2}$$
73 $$1 - 2iT - 73T^{2}$$
79 $$1 - 10T + 79T^{2}$$
83 $$1 + 12iT - 83T^{2}$$
89 $$1 + 6T + 89T^{2}$$
97 $$1 + 8iT - 97T^{2}$$
$$L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}$$