Properties

Label 2-690-5.3-c2-0-1
Degree $2$
Conductor $690$
Sign $-0.179 + 0.983i$
Analytic cond. $18.8011$
Root an. cond. $4.33602$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1 + i)2-s + (1.22 + 1.22i)3-s − 2i·4-s + (−2.00 + 4.58i)5-s − 2.44·6-s + (−5.25 + 5.25i)7-s + (2 + 2i)8-s + 2.99i·9-s + (−2.57 − 6.58i)10-s + 3.64·11-s + (2.44 − 2.44i)12-s + (−7.35 − 7.35i)13-s − 10.5i·14-s + (−8.06 + 3.15i)15-s − 4·16-s + (−14.6 + 14.6i)17-s + ⋯
L(s)  = 1  + (−0.5 + 0.5i)2-s + (0.408 + 0.408i)3-s − 0.5i·4-s + (−0.400 + 0.916i)5-s − 0.408·6-s + (−0.750 + 0.750i)7-s + (0.250 + 0.250i)8-s + 0.333i·9-s + (−0.257 − 0.658i)10-s + 0.331·11-s + (0.204 − 0.204i)12-s + (−0.565 − 0.565i)13-s − 0.750i·14-s + (−0.537 + 0.210i)15-s − 0.250·16-s + (−0.862 + 0.862i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 690 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.179 + 0.983i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 690 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.179 + 0.983i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(690\)    =    \(2 \cdot 3 \cdot 5 \cdot 23\)
Sign: $-0.179 + 0.983i$
Analytic conductor: \(18.8011\)
Root analytic conductor: \(4.33602\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{690} (553, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 690,\ (\ :1),\ -0.179 + 0.983i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.2079624723\)
\(L(\frac12)\) \(\approx\) \(0.2079624723\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (1 - i)T \)
3 \( 1 + (-1.22 - 1.22i)T \)
5 \( 1 + (2.00 - 4.58i)T \)
23 \( 1 + (3.39 + 3.39i)T \)
good7 \( 1 + (5.25 - 5.25i)T - 49iT^{2} \)
11 \( 1 - 3.64T + 121T^{2} \)
13 \( 1 + (7.35 + 7.35i)T + 169iT^{2} \)
17 \( 1 + (14.6 - 14.6i)T - 289iT^{2} \)
19 \( 1 + 3.37iT - 361T^{2} \)
29 \( 1 - 1.23iT - 841T^{2} \)
31 \( 1 - 19.8T + 961T^{2} \)
37 \( 1 + (6.16 - 6.16i)T - 1.36e3iT^{2} \)
41 \( 1 - 47.2T + 1.68e3T^{2} \)
43 \( 1 + (35.5 + 35.5i)T + 1.84e3iT^{2} \)
47 \( 1 + (-33.2 + 33.2i)T - 2.20e3iT^{2} \)
53 \( 1 + (26.6 + 26.6i)T + 2.80e3iT^{2} \)
59 \( 1 + 44.0iT - 3.48e3T^{2} \)
61 \( 1 + 37.9T + 3.72e3T^{2} \)
67 \( 1 + (87.7 - 87.7i)T - 4.48e3iT^{2} \)
71 \( 1 - 7.77T + 5.04e3T^{2} \)
73 \( 1 + (58.7 + 58.7i)T + 5.32e3iT^{2} \)
79 \( 1 - 26.9iT - 6.24e3T^{2} \)
83 \( 1 + (1.79 + 1.79i)T + 6.88e3iT^{2} \)
89 \( 1 + 109. iT - 7.92e3T^{2} \)
97 \( 1 + (-1.22 + 1.22i)T - 9.40e3iT^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.55904365870125696815608764770, −10.00844834962875202524087438914, −9.085138270541337367259143961420, −8.384233152453717836348718129532, −7.42650102817675005958923722647, −6.55214315410726003429395552340, −5.79363035938132546865969573572, −4.43080896945775160152305921316, −3.25014935136020878109438122388, −2.27102470486301699809395333614, 0.085968525027249274852276190627, 1.28805274301259441851993219516, 2.68974578555797342358983636146, 3.90795373711456479329049101992, 4.69886795097641708160297665497, 6.33343900179517122317980005078, 7.26205095411621286399975184455, 7.919814987506441698835047786784, 9.091611138837198727070024582850, 9.352390489704705807088581994357

Graph of the $Z$-function along the critical line