L(s) = 1 | + (1 + i)2-s + (1.22 − 1.22i)3-s + 2i·4-s + (−4.34 − 2.47i)5-s + 2.44·6-s + (−5.93 − 5.93i)7-s + (−2 + 2i)8-s − 2.99i·9-s + (−1.86 − 6.82i)10-s + 11.6·11-s + (2.44 + 2.44i)12-s + (−16.3 + 16.3i)13-s − 11.8i·14-s + (−8.35 + 2.28i)15-s − 4·16-s + (2.76 + 2.76i)17-s + ⋯ |
L(s) = 1 | + (0.5 + 0.5i)2-s + (0.408 − 0.408i)3-s + 0.5i·4-s + (−0.868 − 0.495i)5-s + 0.408·6-s + (−0.848 − 0.848i)7-s + (−0.250 + 0.250i)8-s − 0.333i·9-s + (−0.186 − 0.682i)10-s + 1.06·11-s + (0.204 + 0.204i)12-s + (−1.25 + 1.25i)13-s − 0.848i·14-s + (−0.556 + 0.152i)15-s − 0.250·16-s + (0.162 + 0.162i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 690 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.731 - 0.681i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 690 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.731 - 0.681i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.9117036100\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9117036100\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1 - i)T \) |
| 3 | \( 1 + (-1.22 + 1.22i)T \) |
| 5 | \( 1 + (4.34 + 2.47i)T \) |
| 23 | \( 1 + (-3.39 + 3.39i)T \) |
good | 7 | \( 1 + (5.93 + 5.93i)T + 49iT^{2} \) |
| 11 | \( 1 - 11.6T + 121T^{2} \) |
| 13 | \( 1 + (16.3 - 16.3i)T - 169iT^{2} \) |
| 17 | \( 1 + (-2.76 - 2.76i)T + 289iT^{2} \) |
| 19 | \( 1 - 34.0iT - 361T^{2} \) |
| 29 | \( 1 - 57.1iT - 841T^{2} \) |
| 31 | \( 1 + 27.9T + 961T^{2} \) |
| 37 | \( 1 + (-11.9 - 11.9i)T + 1.36e3iT^{2} \) |
| 41 | \( 1 + 66.6T + 1.68e3T^{2} \) |
| 43 | \( 1 + (-47.1 + 47.1i)T - 1.84e3iT^{2} \) |
| 47 | \( 1 + (30.7 + 30.7i)T + 2.20e3iT^{2} \) |
| 53 | \( 1 + (31.3 - 31.3i)T - 2.80e3iT^{2} \) |
| 59 | \( 1 - 34.2iT - 3.48e3T^{2} \) |
| 61 | \( 1 + 59.4T + 3.72e3T^{2} \) |
| 67 | \( 1 + (14.6 + 14.6i)T + 4.48e3iT^{2} \) |
| 71 | \( 1 - 75.9T + 5.04e3T^{2} \) |
| 73 | \( 1 + (-77.3 + 77.3i)T - 5.32e3iT^{2} \) |
| 79 | \( 1 + 141. iT - 6.24e3T^{2} \) |
| 83 | \( 1 + (74.9 - 74.9i)T - 6.88e3iT^{2} \) |
| 89 | \( 1 - 35.0iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (-6.39 - 6.39i)T + 9.40e3iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.58141871715477963980594868943, −9.459777263795856942709756492620, −8.814130020279115144402152533553, −7.71467897113790605638405128279, −7.07165970017482517386085096662, −6.46654508689797460773125937207, −5.02833358041916491378080332308, −3.92829421234875267341726256506, −3.47096635258312281700892855928, −1.56945075372862992748646576775,
0.25557600418118758108555315078, 2.57671257443763120949875056001, 3.09427423974992554253228665306, 4.18000859585338313684161817696, 5.16332992884449187615904636330, 6.32400248145426179267606434530, 7.25068889573371986866497110916, 8.279823573586749214461665201623, 9.472006487213778119513744037441, 9.728719353247369685701392553829