Properties

Label 2-690-23.8-c1-0-2
Degree $2$
Conductor $690$
Sign $-0.868 + 0.495i$
Analytic cond. $5.50967$
Root an. cond. $2.34727$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.142 + 0.989i)2-s + (0.415 + 0.909i)3-s + (−0.959 − 0.281i)4-s + (−0.654 − 0.755i)5-s + (−0.959 + 0.281i)6-s + (−1.19 − 0.766i)7-s + (0.415 − 0.909i)8-s + (−0.654 + 0.755i)9-s + (0.841 − 0.540i)10-s + (0.577 + 4.01i)11-s + (−0.142 − 0.989i)12-s + (−3.17 + 2.04i)13-s + (0.928 − 1.07i)14-s + (0.415 − 0.909i)15-s + (0.841 + 0.540i)16-s + (−0.685 + 0.201i)17-s + ⋯
L(s)  = 1  + (−0.100 + 0.699i)2-s + (0.239 + 0.525i)3-s + (−0.479 − 0.140i)4-s + (−0.292 − 0.337i)5-s + (−0.391 + 0.115i)6-s + (−0.450 − 0.289i)7-s + (0.146 − 0.321i)8-s + (−0.218 + 0.251i)9-s + (0.266 − 0.170i)10-s + (0.174 + 1.21i)11-s + (−0.0410 − 0.285i)12-s + (−0.881 + 0.566i)13-s + (0.248 − 0.286i)14-s + (0.107 − 0.234i)15-s + (0.210 + 0.135i)16-s + (−0.166 + 0.0487i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 690 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.868 + 0.495i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 690 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.868 + 0.495i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(690\)    =    \(2 \cdot 3 \cdot 5 \cdot 23\)
Sign: $-0.868 + 0.495i$
Analytic conductor: \(5.50967\)
Root analytic conductor: \(2.34727\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{690} (31, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 690,\ (\ :1/2),\ -0.868 + 0.495i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.110352 - 0.416309i\)
\(L(\frac12)\) \(\approx\) \(0.110352 - 0.416309i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.142 - 0.989i)T \)
3 \( 1 + (-0.415 - 0.909i)T \)
5 \( 1 + (0.654 + 0.755i)T \)
23 \( 1 + (1.59 + 4.52i)T \)
good7 \( 1 + (1.19 + 0.766i)T + (2.90 + 6.36i)T^{2} \)
11 \( 1 + (-0.577 - 4.01i)T + (-10.5 + 3.09i)T^{2} \)
13 \( 1 + (3.17 - 2.04i)T + (5.40 - 11.8i)T^{2} \)
17 \( 1 + (0.685 - 0.201i)T + (14.3 - 9.19i)T^{2} \)
19 \( 1 + (5.06 + 1.48i)T + (15.9 + 10.2i)T^{2} \)
29 \( 1 + (6.08 - 1.78i)T + (24.3 - 15.6i)T^{2} \)
31 \( 1 + (4.36 - 9.55i)T + (-20.3 - 23.4i)T^{2} \)
37 \( 1 + (-1.24 + 1.44i)T + (-5.26 - 36.6i)T^{2} \)
41 \( 1 + (7.44 + 8.58i)T + (-5.83 + 40.5i)T^{2} \)
43 \( 1 + (0.495 + 1.08i)T + (-28.1 + 32.4i)T^{2} \)
47 \( 1 - 6.23T + 47T^{2} \)
53 \( 1 + (-10.2 - 6.60i)T + (22.0 + 48.2i)T^{2} \)
59 \( 1 + (-10.2 + 6.56i)T + (24.5 - 53.6i)T^{2} \)
61 \( 1 + (4.37 - 9.57i)T + (-39.9 - 46.1i)T^{2} \)
67 \( 1 + (1.53 - 10.7i)T + (-64.2 - 18.8i)T^{2} \)
71 \( 1 + (1.76 - 12.2i)T + (-68.1 - 20.0i)T^{2} \)
73 \( 1 + (2.26 + 0.665i)T + (61.4 + 39.4i)T^{2} \)
79 \( 1 + (6.51 - 4.18i)T + (32.8 - 71.8i)T^{2} \)
83 \( 1 + (-11.2 + 12.9i)T + (-11.8 - 82.1i)T^{2} \)
89 \( 1 + (3.42 + 7.49i)T + (-58.2 + 67.2i)T^{2} \)
97 \( 1 + (-1.48 - 1.71i)T + (-13.8 + 96.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.58230478805963084878754738465, −10.04897878945333344044508487866, −9.039354446453431217645134982933, −8.603382037583922232845575856973, −7.18085259120776832836453637533, −6.94970156113424037080676814958, −5.47423425000517028522944163127, −4.53608077054231140224034343326, −3.87586313806253286890119588843, −2.16661228530520108661590639939, 0.21355185442609011091622022329, 2.06567229227741905572060265074, 3.11227248341695048528230825235, 3.98664118266589795189284609100, 5.53115616445841547652046196502, 6.35586920714812456169823032055, 7.57962215912170552312111853284, 8.226005849500184628511066214843, 9.207442955758487553353616379884, 9.946111945901501127639033463871

Graph of the $Z$-function along the critical line