Properties

Label 2-690-23.4-c1-0-15
Degree $2$
Conductor $690$
Sign $-0.895 - 0.445i$
Analytic cond. $5.50967$
Root an. cond. $2.34727$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.415 − 0.909i)2-s + (−0.959 + 0.281i)3-s + (−0.654 + 0.755i)4-s + (−0.841 − 0.540i)5-s + (0.654 + 0.755i)6-s + (−0.588 − 4.09i)7-s + (0.959 + 0.281i)8-s + (0.841 − 0.540i)9-s + (−0.142 + 0.989i)10-s + (1.71 − 3.74i)11-s + (0.415 − 0.909i)12-s + (−0.950 + 6.61i)13-s + (−3.47 + 2.23i)14-s + (0.959 + 0.281i)15-s + (−0.142 − 0.989i)16-s + (−1.01 − 1.17i)17-s + ⋯
L(s)  = 1  + (−0.293 − 0.643i)2-s + (−0.553 + 0.162i)3-s + (−0.327 + 0.377i)4-s + (−0.376 − 0.241i)5-s + (0.267 + 0.308i)6-s + (−0.222 − 1.54i)7-s + (0.339 + 0.0996i)8-s + (0.280 − 0.180i)9-s + (−0.0450 + 0.313i)10-s + (0.515 − 1.12i)11-s + (0.119 − 0.262i)12-s + (−0.263 + 1.83i)13-s + (−0.929 + 0.597i)14-s + (0.247 + 0.0727i)15-s + (−0.0355 − 0.247i)16-s + (−0.246 − 0.284i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 690 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.895 - 0.445i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 690 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.895 - 0.445i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(690\)    =    \(2 \cdot 3 \cdot 5 \cdot 23\)
Sign: $-0.895 - 0.445i$
Analytic conductor: \(5.50967\)
Root analytic conductor: \(2.34727\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{690} (211, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 690,\ (\ :1/2),\ -0.895 - 0.445i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.0759631 + 0.323133i\)
\(L(\frac12)\) \(\approx\) \(0.0759631 + 0.323133i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.415 + 0.909i)T \)
3 \( 1 + (0.959 - 0.281i)T \)
5 \( 1 + (0.841 + 0.540i)T \)
23 \( 1 + (3.65 - 3.11i)T \)
good7 \( 1 + (0.588 + 4.09i)T + (-6.71 + 1.97i)T^{2} \)
11 \( 1 + (-1.71 + 3.74i)T + (-7.20 - 8.31i)T^{2} \)
13 \( 1 + (0.950 - 6.61i)T + (-12.4 - 3.66i)T^{2} \)
17 \( 1 + (1.01 + 1.17i)T + (-2.41 + 16.8i)T^{2} \)
19 \( 1 + (-2.03 + 2.35i)T + (-2.70 - 18.8i)T^{2} \)
29 \( 1 + (2.33 + 2.69i)T + (-4.12 + 28.7i)T^{2} \)
31 \( 1 + (6.73 + 1.97i)T + (26.0 + 16.7i)T^{2} \)
37 \( 1 + (9.03 - 5.80i)T + (15.3 - 33.6i)T^{2} \)
41 \( 1 + (8.31 + 5.34i)T + (17.0 + 37.2i)T^{2} \)
43 \( 1 + (3.96 - 1.16i)T + (36.1 - 23.2i)T^{2} \)
47 \( 1 - 1.01T + 47T^{2} \)
53 \( 1 + (0.927 + 6.45i)T + (-50.8 + 14.9i)T^{2} \)
59 \( 1 + (-0.344 + 2.39i)T + (-56.6 - 16.6i)T^{2} \)
61 \( 1 + (-8.74 - 2.56i)T + (51.3 + 32.9i)T^{2} \)
67 \( 1 + (-3.02 - 6.62i)T + (-43.8 + 50.6i)T^{2} \)
71 \( 1 + (-0.258 - 0.566i)T + (-46.4 + 53.6i)T^{2} \)
73 \( 1 + (4.71 - 5.43i)T + (-10.3 - 72.2i)T^{2} \)
79 \( 1 + (1.65 - 11.5i)T + (-75.7 - 22.2i)T^{2} \)
83 \( 1 + (-12.6 + 8.14i)T + (34.4 - 75.4i)T^{2} \)
89 \( 1 + (-8.17 + 2.39i)T + (74.8 - 48.1i)T^{2} \)
97 \( 1 + (1.31 + 0.844i)T + (40.2 + 88.2i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.01226550500012128552534023386, −9.338306188153500102507071721965, −8.417849480951127221802978179810, −7.18850996711016650938335102482, −6.70186808045908736978563633551, −5.20095418902476304246797184481, −4.05911491149442410958490800342, −3.62164527958156385872685354869, −1.59088670774034821927836314415, −0.20888135314341111612789243390, 1.97296127282872059490476826175, 3.47949818974576017647853057021, 5.03356634986783269713895156223, 5.61797781563927082245851773437, 6.53507682831247930548501778503, 7.45328813023109732247727275702, 8.271661153091137663596593696488, 9.158681199717330989927003525911, 10.07547587502546175579394075366, 10.77129704528112074155360060580

Graph of the $Z$-function along the critical line