Properties

Label 2-690-23.3-c1-0-4
Degree $2$
Conductor $690$
Sign $0.973 + 0.227i$
Analytic cond. $5.50967$
Root an. cond. $2.34727$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.142 − 0.989i)2-s + (−0.415 + 0.909i)3-s + (−0.959 + 0.281i)4-s + (−0.654 + 0.755i)5-s + (0.959 + 0.281i)6-s + (1.99 − 1.28i)7-s + (0.415 + 0.909i)8-s + (−0.654 − 0.755i)9-s + (0.841 + 0.540i)10-s + (−0.0482 + 0.335i)11-s + (0.142 − 0.989i)12-s + (−3.00 − 1.93i)13-s + (−1.55 − 1.79i)14-s + (−0.415 − 0.909i)15-s + (0.841 − 0.540i)16-s + (5.91 + 1.73i)17-s + ⋯
L(s)  = 1  + (−0.100 − 0.699i)2-s + (−0.239 + 0.525i)3-s + (−0.479 + 0.140i)4-s + (−0.292 + 0.337i)5-s + (0.391 + 0.115i)6-s + (0.755 − 0.485i)7-s + (0.146 + 0.321i)8-s + (−0.218 − 0.251i)9-s + (0.266 + 0.170i)10-s + (−0.0145 + 0.101i)11-s + (0.0410 − 0.285i)12-s + (−0.834 − 0.536i)13-s + (−0.416 − 0.480i)14-s + (−0.107 − 0.234i)15-s + (0.210 − 0.135i)16-s + (1.43 + 0.421i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 690 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.973 + 0.227i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 690 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.973 + 0.227i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(690\)    =    \(2 \cdot 3 \cdot 5 \cdot 23\)
Sign: $0.973 + 0.227i$
Analytic conductor: \(5.50967\)
Root analytic conductor: \(2.34727\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{690} (601, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 690,\ (\ :1/2),\ 0.973 + 0.227i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.28180 - 0.147911i\)
\(L(\frac12)\) \(\approx\) \(1.28180 - 0.147911i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.142 + 0.989i)T \)
3 \( 1 + (0.415 - 0.909i)T \)
5 \( 1 + (0.654 - 0.755i)T \)
23 \( 1 + (0.240 - 4.78i)T \)
good7 \( 1 + (-1.99 + 1.28i)T + (2.90 - 6.36i)T^{2} \)
11 \( 1 + (0.0482 - 0.335i)T + (-10.5 - 3.09i)T^{2} \)
13 \( 1 + (3.00 + 1.93i)T + (5.40 + 11.8i)T^{2} \)
17 \( 1 + (-5.91 - 1.73i)T + (14.3 + 9.19i)T^{2} \)
19 \( 1 + (-3.66 + 1.07i)T + (15.9 - 10.2i)T^{2} \)
29 \( 1 + (-8.33 - 2.44i)T + (24.3 + 15.6i)T^{2} \)
31 \( 1 + (-2.08 - 4.56i)T + (-20.3 + 23.4i)T^{2} \)
37 \( 1 + (0.647 + 0.747i)T + (-5.26 + 36.6i)T^{2} \)
41 \( 1 + (-0.803 + 0.927i)T + (-5.83 - 40.5i)T^{2} \)
43 \( 1 + (-2.71 + 5.95i)T + (-28.1 - 32.4i)T^{2} \)
47 \( 1 - 9.10T + 47T^{2} \)
53 \( 1 + (-5.84 + 3.75i)T + (22.0 - 48.2i)T^{2} \)
59 \( 1 + (-1.65 - 1.06i)T + (24.5 + 53.6i)T^{2} \)
61 \( 1 + (-0.831 - 1.82i)T + (-39.9 + 46.1i)T^{2} \)
67 \( 1 + (1.28 + 8.91i)T + (-64.2 + 18.8i)T^{2} \)
71 \( 1 + (-0.857 - 5.96i)T + (-68.1 + 20.0i)T^{2} \)
73 \( 1 + (4.05 - 1.19i)T + (61.4 - 39.4i)T^{2} \)
79 \( 1 + (6.04 + 3.88i)T + (32.8 + 71.8i)T^{2} \)
83 \( 1 + (3.14 + 3.62i)T + (-11.8 + 82.1i)T^{2} \)
89 \( 1 + (5.32 - 11.6i)T + (-58.2 - 67.2i)T^{2} \)
97 \( 1 + (-2.50 + 2.88i)T + (-13.8 - 96.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.29503590782753152033727208552, −10.03690300269783119354278526313, −8.842203877453834822534720221570, −7.84688005147564670383407356872, −7.19057468231365945989974664550, −5.59256328825512192417475486663, −4.86428305249084833254315951995, −3.77928825643567378643198332498, −2.84238517762667612600727183322, −1.10931849327668575218135234670, 1.00310266274271398998255380383, 2.64835687334668487110938428351, 4.36637478406418372855642329295, 5.19560076775113686257579142355, 6.01081947478367875024950775460, 7.13810130988736454577485198136, 7.85178992374864712490131142189, 8.483571856601203955507174790645, 9.509304884638368647539646330858, 10.35395725062826852476199925178

Graph of the $Z$-function along the critical line