Properties

Label 2-690-23.3-c1-0-13
Degree $2$
Conductor $690$
Sign $0.715 + 0.698i$
Analytic cond. $5.50967$
Root an. cond. $2.34727$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.142 + 0.989i)2-s + (0.415 − 0.909i)3-s + (−0.959 + 0.281i)4-s + (0.654 − 0.755i)5-s + (0.959 + 0.281i)6-s + (2.49 − 1.60i)7-s + (−0.415 − 0.909i)8-s + (−0.654 − 0.755i)9-s + (0.841 + 0.540i)10-s + (0.638 − 4.44i)11-s + (−0.142 + 0.989i)12-s + (0.235 + 0.151i)13-s + (1.94 + 2.24i)14-s + (−0.415 − 0.909i)15-s + (0.841 − 0.540i)16-s + (−6.26 − 1.84i)17-s + ⋯
L(s)  = 1  + (0.100 + 0.699i)2-s + (0.239 − 0.525i)3-s + (−0.479 + 0.140i)4-s + (0.292 − 0.337i)5-s + (0.391 + 0.115i)6-s + (0.944 − 0.607i)7-s + (−0.146 − 0.321i)8-s + (−0.218 − 0.251i)9-s + (0.266 + 0.170i)10-s + (0.192 − 1.33i)11-s + (−0.0410 + 0.285i)12-s + (0.0652 + 0.0419i)13-s + (0.519 + 0.600i)14-s + (−0.107 − 0.234i)15-s + (0.210 − 0.135i)16-s + (−1.52 − 0.446i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 690 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.715 + 0.698i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 690 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.715 + 0.698i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(690\)    =    \(2 \cdot 3 \cdot 5 \cdot 23\)
Sign: $0.715 + 0.698i$
Analytic conductor: \(5.50967\)
Root analytic conductor: \(2.34727\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{690} (601, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 690,\ (\ :1/2),\ 0.715 + 0.698i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.57477 - 0.641348i\)
\(L(\frac12)\) \(\approx\) \(1.57477 - 0.641348i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.142 - 0.989i)T \)
3 \( 1 + (-0.415 + 0.909i)T \)
5 \( 1 + (-0.654 + 0.755i)T \)
23 \( 1 + (-2.68 + 3.97i)T \)
good7 \( 1 + (-2.49 + 1.60i)T + (2.90 - 6.36i)T^{2} \)
11 \( 1 + (-0.638 + 4.44i)T + (-10.5 - 3.09i)T^{2} \)
13 \( 1 + (-0.235 - 0.151i)T + (5.40 + 11.8i)T^{2} \)
17 \( 1 + (6.26 + 1.84i)T + (14.3 + 9.19i)T^{2} \)
19 \( 1 + (7.29 - 2.14i)T + (15.9 - 10.2i)T^{2} \)
29 \( 1 + (-9.87 - 2.89i)T + (24.3 + 15.6i)T^{2} \)
31 \( 1 + (0.779 + 1.70i)T + (-20.3 + 23.4i)T^{2} \)
37 \( 1 + (-4.58 - 5.28i)T + (-5.26 + 36.6i)T^{2} \)
41 \( 1 + (-2.13 + 2.46i)T + (-5.83 - 40.5i)T^{2} \)
43 \( 1 + (-1.39 + 3.06i)T + (-28.1 - 32.4i)T^{2} \)
47 \( 1 - 12.5T + 47T^{2} \)
53 \( 1 + (2.13 - 1.36i)T + (22.0 - 48.2i)T^{2} \)
59 \( 1 + (1.55 + 0.999i)T + (24.5 + 53.6i)T^{2} \)
61 \( 1 + (0.890 + 1.95i)T + (-39.9 + 46.1i)T^{2} \)
67 \( 1 + (-0.517 - 3.59i)T + (-64.2 + 18.8i)T^{2} \)
71 \( 1 + (1.27 + 8.84i)T + (-68.1 + 20.0i)T^{2} \)
73 \( 1 + (3.71 - 1.09i)T + (61.4 - 39.4i)T^{2} \)
79 \( 1 + (-9.73 - 6.25i)T + (32.8 + 71.8i)T^{2} \)
83 \( 1 + (0.201 + 0.232i)T + (-11.8 + 82.1i)T^{2} \)
89 \( 1 + (1.94 - 4.26i)T + (-58.2 - 67.2i)T^{2} \)
97 \( 1 + (5.46 - 6.30i)T + (-13.8 - 96.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.53881282880510352160112985090, −8.949873420649293837286965088318, −8.609476062862010939967387559897, −7.84988643388413464606897508242, −6.68378868000096836359947351210, −6.17137162553585274392403713965, −4.86425030386837460917138906640, −4.10558181541513777638001001788, −2.48167627914118804771531475232, −0.880541725277278028287363722474, 1.92463667108814265507313539472, 2.60457920238053450528244048689, 4.32126968585386232544258452275, 4.63821490302584839036181332495, 5.96054839049155050865109452893, 7.05892160594253230901606046673, 8.343331291827988566919188756905, 8.962274068569990173999763177438, 9.779498467399255057569877399093, 10.74900064151707319123595211559

Graph of the $Z$-function along the critical line