Properties

Label 2-690-15.8-c1-0-26
Degree $2$
Conductor $690$
Sign $-0.0387 + 0.999i$
Analytic cond. $5.50967$
Root an. cond. $2.34727$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (0.707 + 0.707i)2-s + (−1.70 − 0.292i)3-s + 1.00i·4-s + (−1.73 + 1.41i)5-s + (−0.999 − 1.41i)6-s + (−2.44 + 2.44i)7-s + (−0.707 + 0.707i)8-s + (2.82 + i)9-s + (−2.22 − 0.224i)10-s − 5.65i·11-s + (0.292 − 1.70i)12-s + (1.44 + 1.44i)13-s − 3.46·14-s + (3.37 − 1.90i)15-s − 1.00·16-s + (−5.19 − 5.19i)17-s + ⋯
L(s)  = 1  + (0.499 + 0.499i)2-s + (−0.985 − 0.169i)3-s + 0.500i·4-s + (−0.774 + 0.632i)5-s + (−0.408 − 0.577i)6-s + (−0.925 + 0.925i)7-s + (−0.250 + 0.250i)8-s + (0.942 + 0.333i)9-s + (−0.703 − 0.0710i)10-s − 1.70i·11-s + (0.0845 − 0.492i)12-s + (0.402 + 0.402i)13-s − 0.925·14-s + (0.870 − 0.492i)15-s − 0.250·16-s + (−1.26 − 1.26i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 690 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0387 + 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 690 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0387 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(690\)    =    \(2 \cdot 3 \cdot 5 \cdot 23\)
Sign: $-0.0387 + 0.999i$
Analytic conductor: \(5.50967\)
Root analytic conductor: \(2.34727\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{690} (323, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 690,\ (\ :1/2),\ -0.0387 + 0.999i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.164965 - 0.171488i\)
\(L(\frac12)\) \(\approx\) \(0.164965 - 0.171488i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.707 - 0.707i)T \)
3 \( 1 + (1.70 + 0.292i)T \)
5 \( 1 + (1.73 - 1.41i)T \)
23 \( 1 + (-0.707 + 0.707i)T \)
good7 \( 1 + (2.44 - 2.44i)T - 7iT^{2} \)
11 \( 1 + 5.65iT - 11T^{2} \)
13 \( 1 + (-1.44 - 1.44i)T + 13iT^{2} \)
17 \( 1 + (5.19 + 5.19i)T + 17iT^{2} \)
19 \( 1 - 2.44iT - 19T^{2} \)
29 \( 1 - 9.12T + 29T^{2} \)
31 \( 1 + 4.89T + 31T^{2} \)
37 \( 1 + (-2.44 + 2.44i)T - 37iT^{2} \)
41 \( 1 + 8.48iT - 41T^{2} \)
43 \( 1 + (6.89 + 6.89i)T + 43iT^{2} \)
47 \( 1 + (2.04 + 2.04i)T + 47iT^{2} \)
53 \( 1 + (9.43 - 9.43i)T - 53iT^{2} \)
59 \( 1 + 8.34T + 59T^{2} \)
61 \( 1 + 8.89T + 61T^{2} \)
67 \( 1 + (1.10 - 1.10i)T - 67iT^{2} \)
71 \( 1 + 6.14iT - 71T^{2} \)
73 \( 1 + (-7.89 - 7.89i)T + 73iT^{2} \)
79 \( 1 - 0.449iT - 79T^{2} \)
83 \( 1 + (1.41 - 1.41i)T - 83iT^{2} \)
89 \( 1 + 2.19T + 89T^{2} \)
97 \( 1 + (-4.44 + 4.44i)T - 97iT^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.62620507137669044468378394332, −9.215537197891405595610873353309, −8.448452399095767249786548742312, −7.27715401005919476731994300646, −6.43381966764069566173491632042, −6.03603295701717321550803672636, −4.92203940575855037512542680658, −3.72331903374651836002115399120, −2.74252274766563989410714641979, −0.12463525596437182630034052012, 1.43396195901344587719508504781, 3.41805821829252120352112090655, 4.51108066876830105169121974798, 4.71557770029059530629093308613, 6.34363462430399986786011248356, 6.83522579380463680612979822597, 7.968594676415279823024945258617, 9.344585563938427033734187740525, 10.05532214556375652862400077635, 10.79352238624034286997593213052

Graph of the $Z$-function along the critical line