L(s) = 1 | + (0.707 + 0.707i)2-s + (−0.838 − 1.51i)3-s + 1.00i·4-s + (2.23 − 0.0661i)5-s + (0.479 − 1.66i)6-s + (2.39 − 2.39i)7-s + (−0.707 + 0.707i)8-s + (−1.59 + 2.54i)9-s + (1.62 + 1.53i)10-s + 3.77i·11-s + (1.51 − 0.838i)12-s + (3.87 + 3.87i)13-s + 3.38·14-s + (−1.97 − 3.33i)15-s − 1.00·16-s + (−2.58 − 2.58i)17-s + ⋯ |
L(s) = 1 | + (0.499 + 0.499i)2-s + (−0.483 − 0.875i)3-s + 0.500i·4-s + (0.999 − 0.0295i)5-s + (0.195 − 0.679i)6-s + (0.905 − 0.905i)7-s + (−0.250 + 0.250i)8-s + (−0.531 + 0.846i)9-s + (0.514 + 0.484i)10-s + 1.13i·11-s + (0.437 − 0.241i)12-s + (1.07 + 1.07i)13-s + 0.905·14-s + (−0.509 − 0.860i)15-s − 0.250·16-s + (−0.626 − 0.626i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 690 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.0189i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 690 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.999 + 0.0189i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.17533 - 0.0206169i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.17533 - 0.0206169i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.707 - 0.707i)T \) |
| 3 | \( 1 + (0.838 + 1.51i)T \) |
| 5 | \( 1 + (-2.23 + 0.0661i)T \) |
| 23 | \( 1 + (-0.707 + 0.707i)T \) |
good | 7 | \( 1 + (-2.39 + 2.39i)T - 7iT^{2} \) |
| 11 | \( 1 - 3.77iT - 11T^{2} \) |
| 13 | \( 1 + (-3.87 - 3.87i)T + 13iT^{2} \) |
| 17 | \( 1 + (2.58 + 2.58i)T + 17iT^{2} \) |
| 19 | \( 1 + 6.80iT - 19T^{2} \) |
| 29 | \( 1 - 6.48T + 29T^{2} \) |
| 31 | \( 1 + 7.09T + 31T^{2} \) |
| 37 | \( 1 + (-4.68 + 4.68i)T - 37iT^{2} \) |
| 41 | \( 1 - 8.03iT - 41T^{2} \) |
| 43 | \( 1 + (2.86 + 2.86i)T + 43iT^{2} \) |
| 47 | \( 1 + (-3.40 - 3.40i)T + 47iT^{2} \) |
| 53 | \( 1 + (1.15 - 1.15i)T - 53iT^{2} \) |
| 59 | \( 1 - 0.993T + 59T^{2} \) |
| 61 | \( 1 + 11.6T + 61T^{2} \) |
| 67 | \( 1 + (-1.09 + 1.09i)T - 67iT^{2} \) |
| 71 | \( 1 + 9.26iT - 71T^{2} \) |
| 73 | \( 1 + (-2.14 - 2.14i)T + 73iT^{2} \) |
| 79 | \( 1 + 4.59iT - 79T^{2} \) |
| 83 | \( 1 + (5.20 - 5.20i)T - 83iT^{2} \) |
| 89 | \( 1 + 9.56T + 89T^{2} \) |
| 97 | \( 1 + (10.5 - 10.5i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.89067434014402528567614210513, −9.456602531834086732511855170474, −8.624743080829827169754646798386, −7.42930745485346517004633149273, −6.88668481619738401787791324250, −6.19887856970187117363681618927, −4.93654063655192319578561920604, −4.46779353217403153430623844541, −2.46441880970923295470540544495, −1.37218722546082829898236213906,
1.42995235668312699412522164588, 2.89688488266320531931270980800, 3.91208254242231835392639326514, 5.22509909911080227294302586512, 5.74935482356078540928003963836, 6.25566064728445119689762960631, 8.357631562628924410738058558440, 8.760072592125164406692827900114, 9.891519485962715929424888696043, 10.69973100794459724597893771432