Properties

Label 2-690-15.2-c1-0-36
Degree $2$
Conductor $690$
Sign $0.0303 + 0.999i$
Analytic cond. $5.50967$
Root an. cond. $2.34727$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.707 − 0.707i)2-s + (1.66 − 0.471i)3-s − 1.00i·4-s + (1.55 + 1.60i)5-s + (0.844 − 1.51i)6-s + (−3.44 − 3.44i)7-s + (−0.707 − 0.707i)8-s + (2.55 − 1.57i)9-s + (2.23 + 0.0307i)10-s − 3.84i·11-s + (−0.471 − 1.66i)12-s + (0.875 − 0.875i)13-s − 4.87·14-s + (3.35 + 1.93i)15-s − 1.00·16-s + (−1.35 + 1.35i)17-s + ⋯
L(s)  = 1  + (0.499 − 0.499i)2-s + (0.962 − 0.272i)3-s − 0.500i·4-s + (0.697 + 0.716i)5-s + (0.344 − 0.617i)6-s + (−1.30 − 1.30i)7-s + (−0.250 − 0.250i)8-s + (0.851 − 0.524i)9-s + (0.707 + 0.00972i)10-s − 1.15i·11-s + (−0.136 − 0.481i)12-s + (0.242 − 0.242i)13-s − 1.30·14-s + (0.866 + 0.499i)15-s − 0.250·16-s + (−0.329 + 0.329i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 690 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0303 + 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 690 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0303 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(690\)    =    \(2 \cdot 3 \cdot 5 \cdot 23\)
Sign: $0.0303 + 0.999i$
Analytic conductor: \(5.50967\)
Root analytic conductor: \(2.34727\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{690} (47, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 690,\ (\ :1/2),\ 0.0303 + 0.999i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.89838 - 1.84157i\)
\(L(\frac12)\) \(\approx\) \(1.89838 - 1.84157i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.707 + 0.707i)T \)
3 \( 1 + (-1.66 + 0.471i)T \)
5 \( 1 + (-1.55 - 1.60i)T \)
23 \( 1 + (0.707 + 0.707i)T \)
good7 \( 1 + (3.44 + 3.44i)T + 7iT^{2} \)
11 \( 1 + 3.84iT - 11T^{2} \)
13 \( 1 + (-0.875 + 0.875i)T - 13iT^{2} \)
17 \( 1 + (1.35 - 1.35i)T - 17iT^{2} \)
19 \( 1 - 3.81iT - 19T^{2} \)
29 \( 1 - 7.78T + 29T^{2} \)
31 \( 1 - 5.58T + 31T^{2} \)
37 \( 1 + (-1.86 - 1.86i)T + 37iT^{2} \)
41 \( 1 - 4.29iT - 41T^{2} \)
43 \( 1 + (-0.142 + 0.142i)T - 43iT^{2} \)
47 \( 1 + (3.63 - 3.63i)T - 47iT^{2} \)
53 \( 1 + (-3.62 - 3.62i)T + 53iT^{2} \)
59 \( 1 - 3.87T + 59T^{2} \)
61 \( 1 + 13.5T + 61T^{2} \)
67 \( 1 + (2.77 + 2.77i)T + 67iT^{2} \)
71 \( 1 - 6.15iT - 71T^{2} \)
73 \( 1 + (9.60 - 9.60i)T - 73iT^{2} \)
79 \( 1 + 17.1iT - 79T^{2} \)
83 \( 1 + (-2.00 - 2.00i)T + 83iT^{2} \)
89 \( 1 - 12.5T + 89T^{2} \)
97 \( 1 + (3.36 + 3.36i)T + 97iT^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.23825158273725011481787128656, −9.718601416986140490894997999214, −8.625128127974482325301123745552, −7.56046191486207470846057972415, −6.42998629085238166795070310846, −6.18430329467611562087526119811, −4.28775515490993600613682458446, −3.32388609831231282484909768759, −2.83300260183442454686979629463, −1.16373749488963030491714532372, 2.18957233666554753371575864738, 2.95327753317412990065238722665, 4.36487894061347599872748256129, 5.14485061981227063579696008380, 6.27765867980796310337516811749, 6.98451578681751207516922166262, 8.297286406233769809932907889319, 9.034850062183637853047406992383, 9.497848021073654780207243227764, 10.26340127730253163858578224660

Graph of the $Z$-function along the critical line