L(s) = 1 | + (0.707 − 0.707i)2-s + (−1.47 − 0.906i)3-s − 1.00i·4-s + (1.96 + 1.05i)5-s + (−1.68 + 0.402i)6-s + (−0.621 − 0.621i)7-s + (−0.707 − 0.707i)8-s + (1.35 + 2.67i)9-s + (2.14 − 0.643i)10-s − 4.12i·11-s + (−0.906 + 1.47i)12-s + (−0.734 + 0.734i)13-s − 0.878·14-s + (−1.94 − 3.34i)15-s − 1.00·16-s + (2.50 − 2.50i)17-s + ⋯ |
L(s) = 1 | + (0.499 − 0.499i)2-s + (−0.852 − 0.523i)3-s − 0.500i·4-s + (0.880 + 0.473i)5-s + (−0.687 + 0.164i)6-s + (−0.234 − 0.234i)7-s + (−0.250 − 0.250i)8-s + (0.451 + 0.892i)9-s + (0.677 − 0.203i)10-s − 1.24i·11-s + (−0.261 + 0.426i)12-s + (−0.203 + 0.203i)13-s − 0.234·14-s + (−0.502 − 0.864i)15-s − 0.250·16-s + (0.606 − 0.606i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 690 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.471 + 0.881i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 690 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.471 + 0.881i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.796854 - 1.32973i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.796854 - 1.32973i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.707 + 0.707i)T \) |
| 3 | \( 1 + (1.47 + 0.906i)T \) |
| 5 | \( 1 + (-1.96 - 1.05i)T \) |
| 23 | \( 1 + (-0.707 - 0.707i)T \) |
good | 7 | \( 1 + (0.621 + 0.621i)T + 7iT^{2} \) |
| 11 | \( 1 + 4.12iT - 11T^{2} \) |
| 13 | \( 1 + (0.734 - 0.734i)T - 13iT^{2} \) |
| 17 | \( 1 + (-2.50 + 2.50i)T - 17iT^{2} \) |
| 19 | \( 1 + 7.88iT - 19T^{2} \) |
| 29 | \( 1 - 7.83T + 29T^{2} \) |
| 31 | \( 1 + 7.07T + 31T^{2} \) |
| 37 | \( 1 + (6.46 + 6.46i)T + 37iT^{2} \) |
| 41 | \( 1 - 1.77iT - 41T^{2} \) |
| 43 | \( 1 + (6.31 - 6.31i)T - 43iT^{2} \) |
| 47 | \( 1 + (-0.0280 + 0.0280i)T - 47iT^{2} \) |
| 53 | \( 1 + (9.77 + 9.77i)T + 53iT^{2} \) |
| 59 | \( 1 - 10.9T + 59T^{2} \) |
| 61 | \( 1 - 11.0T + 61T^{2} \) |
| 67 | \( 1 + (-10.8 - 10.8i)T + 67iT^{2} \) |
| 71 | \( 1 - 2.25iT - 71T^{2} \) |
| 73 | \( 1 + (8.48 - 8.48i)T - 73iT^{2} \) |
| 79 | \( 1 + 1.98iT - 79T^{2} \) |
| 83 | \( 1 + (-2.21 - 2.21i)T + 83iT^{2} \) |
| 89 | \( 1 - 6.08T + 89T^{2} \) |
| 97 | \( 1 + (-11.8 - 11.8i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.38700495829476315514363605073, −9.659029178027188098456220704570, −8.560274437566440948248646027473, −7.04718397228398093707544848797, −6.62368274806687262164813978357, −5.54208398368885154110002720535, −4.98763743474620297706964674741, −3.37034269552394963893882263645, −2.30389268321274452235139015279, −0.800451124449531447352971826237,
1.72937192908212994534291449997, 3.50043414232059009160239203704, 4.63957091974722335823485210184, 5.36398968710999862415155631777, 6.09862129506158858691459476125, 6.90016946760296620173940787962, 8.099588899174079837516141336059, 9.168724397562497504227478020337, 10.09818095698909918679616392792, 10.39245552050175573384622253932