Properties

Label 2-690-15.2-c1-0-28
Degree $2$
Conductor $690$
Sign $0.374 + 0.927i$
Analytic cond. $5.50967$
Root an. cond. $2.34727$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.707 − 0.707i)2-s + (−0.292 + 1.70i)3-s − 1.00i·4-s − 2.23i·5-s + (0.999 + 1.41i)6-s + (−0.707 − 0.707i)8-s + (−2.82 − i)9-s + (−1.58 − 1.58i)10-s + 2.82i·11-s + (1.70 + 0.292i)12-s + (4.16 − 4.16i)13-s + (3.81 + 0.654i)15-s − 1.00·16-s + (3.65 − 3.65i)17-s + (−2.70 + 1.29i)18-s − 5.16i·19-s + ⋯
L(s)  = 1  + (0.499 − 0.499i)2-s + (−0.169 + 0.985i)3-s − 0.500i·4-s − 0.999i·5-s + (0.408 + 0.577i)6-s + (−0.250 − 0.250i)8-s + (−0.942 − 0.333i)9-s + (−0.500 − 0.500i)10-s + 0.852i·11-s + (0.492 + 0.0845i)12-s + (1.15 − 1.15i)13-s + (0.985 + 0.169i)15-s − 0.250·16-s + (0.885 − 0.885i)17-s + (−0.638 + 0.304i)18-s − 1.18i·19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 690 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.374 + 0.927i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 690 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.374 + 0.927i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(690\)    =    \(2 \cdot 3 \cdot 5 \cdot 23\)
Sign: $0.374 + 0.927i$
Analytic conductor: \(5.50967\)
Root analytic conductor: \(2.34727\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{690} (47, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 690,\ (\ :1/2),\ 0.374 + 0.927i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.46904 - 0.991223i\)
\(L(\frac12)\) \(\approx\) \(1.46904 - 0.991223i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.707 + 0.707i)T \)
3 \( 1 + (0.292 - 1.70i)T \)
5 \( 1 + 2.23iT \)
23 \( 1 + (0.707 + 0.707i)T \)
good7 \( 1 + 7iT^{2} \)
11 \( 1 - 2.82iT - 11T^{2} \)
13 \( 1 + (-4.16 + 4.16i)T - 13iT^{2} \)
17 \( 1 + (-3.65 + 3.65i)T - 17iT^{2} \)
19 \( 1 + 5.16iT - 19T^{2} \)
29 \( 1 + 4.47T + 29T^{2} \)
31 \( 1 - 10.3T + 31T^{2} \)
37 \( 1 + (-5.16 - 5.16i)T + 37iT^{2} \)
41 \( 1 + 6.11iT - 41T^{2} \)
43 \( 1 + (2.83 - 2.83i)T - 43iT^{2} \)
47 \( 1 + (8.71 - 8.71i)T - 47iT^{2} \)
53 \( 1 + (6.70 + 6.70i)T + 53iT^{2} \)
59 \( 1 - 9.89T + 59T^{2} \)
61 \( 1 - 8T + 61T^{2} \)
67 \( 1 + (-5.16 - 5.16i)T + 67iT^{2} \)
71 \( 1 - 3.05iT - 71T^{2} \)
73 \( 1 + (7.32 - 7.32i)T - 73iT^{2} \)
79 \( 1 + 3.16iT - 79T^{2} \)
83 \( 1 + (5.88 + 5.88i)T + 83iT^{2} \)
89 \( 1 + 0.458T + 89T^{2} \)
97 \( 1 + (-1.16 - 1.16i)T + 97iT^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.10761456781451183238510673478, −9.782198939356716686589244349355, −8.771865439911610807124381345785, −7.959438700899699733471722993977, −6.41500998671630582561970026091, −5.33153597054205838126672408656, −4.84952980948401669702319239846, −3.85035966592552600181741963429, −2.77402710710490542156853599727, −0.884448797860282078120196194643, 1.65352922810162116145508389694, 3.10980569070032016261842038759, 3.98192286443537433050914471755, 5.76422129720295689159940879604, 6.15683189908640842345303043588, 6.89343413772146271090985666845, 7.988251071895501440387636947324, 8.394024185977614352585341213070, 9.810392774052877507446289001986, 10.98051993249307655722818489301

Graph of the $Z$-function along the critical line