Properties

Label 2-690-115.68-c1-0-14
Degree $2$
Conductor $690$
Sign $0.175 + 0.984i$
Analytic cond. $5.50967$
Root an. cond. $2.34727$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.707 + 0.707i)2-s + (0.707 + 0.707i)3-s − 1.00i·4-s + (−0.899 + 2.04i)5-s − 1.00·6-s + (−1.80 − 1.80i)7-s + (0.707 + 0.707i)8-s + 1.00i·9-s + (−0.811 − 2.08i)10-s − 4.16i·11-s + (0.707 − 0.707i)12-s + (−3.18 − 3.18i)13-s + 2.55·14-s + (−2.08 + 0.811i)15-s − 1.00·16-s + (−1.68 − 1.68i)17-s + ⋯
L(s)  = 1  + (−0.499 + 0.499i)2-s + (0.408 + 0.408i)3-s − 0.500i·4-s + (−0.402 + 0.915i)5-s − 0.408·6-s + (−0.683 − 0.683i)7-s + (0.250 + 0.250i)8-s + 0.333i·9-s + (−0.256 − 0.658i)10-s − 1.25i·11-s + (0.204 − 0.204i)12-s + (−0.884 − 0.884i)13-s + 0.683·14-s + (−0.537 + 0.209i)15-s − 0.250·16-s + (−0.408 − 0.408i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 690 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.175 + 0.984i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 690 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.175 + 0.984i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(690\)    =    \(2 \cdot 3 \cdot 5 \cdot 23\)
Sign: $0.175 + 0.984i$
Analytic conductor: \(5.50967\)
Root analytic conductor: \(2.34727\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{690} (643, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 690,\ (\ :1/2),\ 0.175 + 0.984i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.357589 - 0.299391i\)
\(L(\frac12)\) \(\approx\) \(0.357589 - 0.299391i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.707 - 0.707i)T \)
3 \( 1 + (-0.707 - 0.707i)T \)
5 \( 1 + (0.899 - 2.04i)T \)
23 \( 1 + (-4.36 - 1.98i)T \)
good7 \( 1 + (1.80 + 1.80i)T + 7iT^{2} \)
11 \( 1 + 4.16iT - 11T^{2} \)
13 \( 1 + (3.18 + 3.18i)T + 13iT^{2} \)
17 \( 1 + (1.68 + 1.68i)T + 17iT^{2} \)
19 \( 1 + 5.24T + 19T^{2} \)
29 \( 1 + 3.48iT - 29T^{2} \)
31 \( 1 - 7.27T + 31T^{2} \)
37 \( 1 + (5.46 + 5.46i)T + 37iT^{2} \)
41 \( 1 - 4.53T + 41T^{2} \)
43 \( 1 + (6.37 - 6.37i)T - 43iT^{2} \)
47 \( 1 + (9.09 - 9.09i)T - 47iT^{2} \)
53 \( 1 + (-6.56 + 6.56i)T - 53iT^{2} \)
59 \( 1 + 6.80iT - 59T^{2} \)
61 \( 1 - 0.759iT - 61T^{2} \)
67 \( 1 + (2.02 + 2.02i)T + 67iT^{2} \)
71 \( 1 + 9.56T + 71T^{2} \)
73 \( 1 + (5.78 + 5.78i)T + 73iT^{2} \)
79 \( 1 - 6.84T + 79T^{2} \)
83 \( 1 + (-2.40 + 2.40i)T - 83iT^{2} \)
89 \( 1 - 3.58T + 89T^{2} \)
97 \( 1 + (4.03 + 4.03i)T + 97iT^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.25794444560127499328778739531, −9.476375172917604058965118451820, −8.421791015595368442452561709211, −7.73297096791431156705481484367, −6.83029285271762859758326312833, −6.09682146648883431217617461181, −4.75556300631017493447590706629, −3.51941790743703101900199165918, −2.69124707992200514009737522965, −0.26343629758360899445946587784, 1.70270361280158901435249662199, 2.67265193543833931389562072553, 4.12971922469913296182172363964, 4.95121588500881153765770889778, 6.56986515511027892944768733694, 7.21021737566927101601692984791, 8.426902743299365575260336737408, 8.879387189814544605263217294974, 9.642095127199364620121721437289, 10.45543036244082258426570790075

Graph of the $Z$-function along the critical line