Properties

Label 2-690-115.103-c1-0-13
Degree $2$
Conductor $690$
Sign $-0.226 + 0.974i$
Analytic cond. $5.50967$
Root an. cond. $2.34727$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.212 − 0.977i)2-s + (−0.800 + 0.599i)3-s + (−0.909 − 0.415i)4-s + (−2.06 + 0.850i)5-s + (0.415 + 0.909i)6-s + (−0.184 + 2.58i)7-s + (−0.599 + 0.800i)8-s + (0.281 − 0.959i)9-s + (0.391 + 2.20i)10-s + (2.58 − 4.02i)11-s + (0.977 − 0.212i)12-s + (−4.73 + 0.338i)13-s + (2.48 + 0.729i)14-s + (1.14 − 1.92i)15-s + (0.654 + 0.755i)16-s + (1.98 − 5.30i)17-s + ⋯
L(s)  = 1  + (0.150 − 0.690i)2-s + (−0.462 + 0.345i)3-s + (−0.454 − 0.207i)4-s + (−0.924 + 0.380i)5-s + (0.169 + 0.371i)6-s + (−0.0697 + 0.975i)7-s + (−0.211 + 0.283i)8-s + (0.0939 − 0.319i)9-s + (0.123 + 0.696i)10-s + (0.780 − 1.21i)11-s + (0.282 − 0.0613i)12-s + (−1.31 + 0.0938i)13-s + (0.663 + 0.194i)14-s + (0.295 − 0.495i)15-s + (0.163 + 0.188i)16-s + (0.480 − 1.28i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 690 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.226 + 0.974i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 690 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.226 + 0.974i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(690\)    =    \(2 \cdot 3 \cdot 5 \cdot 23\)
Sign: $-0.226 + 0.974i$
Analytic conductor: \(5.50967\)
Root analytic conductor: \(2.34727\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{690} (103, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 690,\ (\ :1/2),\ -0.226 + 0.974i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.513924 - 0.647073i\)
\(L(\frac12)\) \(\approx\) \(0.513924 - 0.647073i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.212 + 0.977i)T \)
3 \( 1 + (0.800 - 0.599i)T \)
5 \( 1 + (2.06 - 0.850i)T \)
23 \( 1 + (-3.66 - 3.09i)T \)
good7 \( 1 + (0.184 - 2.58i)T + (-6.92 - 0.996i)T^{2} \)
11 \( 1 + (-2.58 + 4.02i)T + (-4.56 - 10.0i)T^{2} \)
13 \( 1 + (4.73 - 0.338i)T + (12.8 - 1.85i)T^{2} \)
17 \( 1 + (-1.98 + 5.30i)T + (-12.8 - 11.1i)T^{2} \)
19 \( 1 + (-1.63 + 3.58i)T + (-12.4 - 14.3i)T^{2} \)
29 \( 1 + (-6.23 + 2.84i)T + (18.9 - 21.9i)T^{2} \)
31 \( 1 + (0.969 + 6.74i)T + (-29.7 + 8.73i)T^{2} \)
37 \( 1 + (1.64 + 3.01i)T + (-20.0 + 31.1i)T^{2} \)
41 \( 1 + (9.76 - 2.86i)T + (34.4 - 22.1i)T^{2} \)
43 \( 1 + (3.97 + 5.30i)T + (-12.1 + 41.2i)T^{2} \)
47 \( 1 + (0.388 - 0.388i)T - 47iT^{2} \)
53 \( 1 + (-7.03 - 0.502i)T + (52.4 + 7.54i)T^{2} \)
59 \( 1 + (-0.565 - 0.490i)T + (8.39 + 58.3i)T^{2} \)
61 \( 1 + (7.52 - 1.08i)T + (58.5 - 17.1i)T^{2} \)
67 \( 1 + (11.6 + 2.52i)T + (60.9 + 27.8i)T^{2} \)
71 \( 1 + (-6.13 + 3.94i)T + (29.4 - 64.5i)T^{2} \)
73 \( 1 + (-9.22 + 3.43i)T + (55.1 - 47.8i)T^{2} \)
79 \( 1 + (3.27 - 3.77i)T + (-11.2 - 78.1i)T^{2} \)
83 \( 1 + (-2.43 + 1.33i)T + (44.8 - 69.8i)T^{2} \)
89 \( 1 + (-1.69 + 11.7i)T + (-85.3 - 25.0i)T^{2} \)
97 \( 1 + (-14.8 - 8.09i)T + (52.4 + 81.6i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.35486135365059702354403166528, −9.387723521174372580029544440623, −8.823875766828770745872001745646, −7.60541529766271636003583396162, −6.61418298991509217793924446112, −5.43413703380443564145096351063, −4.69627142809053048292862298442, −3.42988121048225218408581697413, −2.67416165272374539619159282502, −0.50055084371206210391437926871, 1.30248898484685417109845985548, 3.49848831275128703246883213028, 4.50547975678247709222130170077, 5.11227769088494797419784860048, 6.64497289247564960045981861620, 7.09959695809295027327175455847, 7.85807869897869144504733355688, 8.723526612217997973136348270917, 10.00309691232645183955267032178, 10.51907523248125937486067091383

Graph of the $Z$-function along the critical line